A deep learning method based on patchwise training for reconstructing temperature field

领域(数学) 人工智能 深度学习 计算机科学 感知器 人工神经网络 多层感知器 一般化 机器学习 温度测量 推论 培训(气象学) 点(几何) 模式识别(心理学) 功率(物理) 有限元法 算法 温度控制 计算机视觉 自动化 数据点 工程类 回归
作者
Xingwen Peng,Xingchen Li,Zhiqiang Gong,Xiaoyu Zhao,Wen Yao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2201.10860
摘要

Physical field reconstruction is highly desirable for the measurement and control of engineering systems. The reconstruction of the temperature field from limited observation plays a crucial role in thermal management for electronic equipment. Deep learning has been employed in physical field reconstruction, whereas the accurate estimation for the regions with large gradients is still diffcult. To solve the problem, this work proposes a novel deep learning method based on patchwise training to reconstruct the temperature field of electronic equipment accurately from limited observation. Firstly, the temperature field reconstruction (TFR) problem of the electronic equipment is modeled mathematically and transformed as an image-to-image regression task. Then a patchwise training and inference framework consisting of an adaptive UNet and a shallow multilayer perceptron (MLP) is developed to establish the mapping from the observation to the temperature field. The adaptive UNet is utilized to reconstruct the whole temperature field while the MLP is designed to predict the patches with large temperature gradients. Experiments employing finite element simulation data are conducted to demonstrate the accuracy of the proposed method. Furthermore, the generalization is evaluated by investigating cases under different heat source layouts, different power intensities, and different observation point locations. The maximum absolute errors of the reconstructed temperature field are less than 1K under the patchwise training approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助强仔采纳,获得10
1秒前
向阳发布了新的文献求助10
1秒前
在水一方应助杨哥四世采纳,获得10
1秒前
1秒前
老迟到的秋完成签到,获得积分10
2秒前
3秒前
venom应助wjw采纳,获得10
3秒前
3秒前
and999发布了新的文献求助10
4秒前
4秒前
necessaryman发布了新的文献求助10
4秒前
huanggyan完成签到 ,获得积分10
5秒前
杨云婷完成签到 ,获得积分10
5秒前
huahuahua发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
zjs226688发布了新的文献求助10
6秒前
田様应助高野采纳,获得10
7秒前
小蘑菇应助向会妍采纳,获得10
7秒前
7秒前
7秒前
斯文败类应助高兴的向秋采纳,获得10
8秒前
yael发布了新的文献求助30
8秒前
wanci应助bjhfyn采纳,获得10
9秒前
9秒前
sha303270发布了新的文献求助10
9秒前
CipherSage应助NiLou采纳,获得10
10秒前
圆圆发布了新的文献求助10
11秒前
无限若云完成签到,获得积分10
11秒前
yy发布了新的文献求助10
12秒前
1木木发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助150
13秒前
ccxb1014ft发布了新的文献求助10
14秒前
李爱国应助科研小黑采纳,获得10
14秒前
15秒前
彭于彦祖应助深情寒蕾采纳,获得30
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069