Full Attention Wasserstein GAN With Gradient Normalization for Fault Diagnosis Under Imbalanced Data

鉴别器 规范化(社会学) 计算机科学 判别式 人工智能 卷积神经网络 断层(地质) 人工神经网络 机器学习 深度学习 模式识别(心理学) 数据挖掘 生成对抗网络 社会学 人类学 电信 探测器 地震学 地质学
作者
Jigang Fan,Xianfeng Yuan,Zhaoming Miao,Zihao Sun,Xiaoxue Mei,Fengyu Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:48
标识
DOI:10.1109/tim.2022.3190525
摘要

The fault diagnosis of rolling bearings is vital for the safe and reliable operation of mechanical equipment. However, the imbalanced data collected from the real engineering scenario bring great challenges to the deep learning-based diagnosis methods. For this purpose, this article proposes a methodology called full attention Wasserstein generative adversarial network (WGAN) with gradient normalization (FAWGAN-GN) for data augmentation and uses a shallow 1-D convolutional neural network (CNN) to perform fault diagnosis. First, a gradient normalization (GN) is introduced into the discriminator as a model-wise constraint to make it more flexible in setting the structure of the network, which leads to a more stable and faster training process. Second, the full attention (FA) mechanism is utilized to let the generator pay more attention to learning the discriminative features of the original data and generate high-quality samples. Third, to more thoroughly and deeply evaluate the data generation performance of generative adversarial networks (GANs), a more comprehensive multiple indicator-based evaluation framework is developed to avoid the one-sidedness and superficiality of using one or two simple indicators. Based on two widely applied fault diagnosis datasets and a real rolling bearing fault diagnosis testbed, extensive comparative fault diagnosis experiments are conducted to validate the effectiveness of the proposed method. Experimental results reveal that the proposed FAWGAN-GN can effectively solve the sample imbalance problem and outperforms the state-of-the-art imbalanced fault diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh完成签到 ,获得积分10
1秒前
unowhoiam完成签到 ,获得积分10
4秒前
明理的踏歌完成签到,获得积分10
4秒前
lin给糟糕的道罡的求助进行了留言
5秒前
5秒前
12秒前
忧虑的静柏完成签到 ,获得积分10
12秒前
希望天下0贩的0应助ycw7777采纳,获得10
15秒前
alixy完成签到,获得积分10
15秒前
17秒前
20秒前
20秒前
科科通通完成签到,获得积分10
25秒前
andy发布了新的文献求助10
26秒前
侯雪枫发布了新的文献求助50
28秒前
三人水明完成签到 ,获得积分10
28秒前
上官凯凯完成签到 ,获得积分10
29秒前
朴实一曲应助andy采纳,获得10
30秒前
jenningseastera应助andy采纳,获得10
30秒前
上官若男应助andy采纳,获得10
30秒前
zyznh完成签到 ,获得积分10
31秒前
GB完成签到 ,获得积分10
31秒前
32秒前
北笙完成签到 ,获得积分10
34秒前
yurunxintian完成签到,获得积分10
37秒前
小学生学免疫完成签到 ,获得积分10
43秒前
44秒前
44秒前
余味应助科研通管家采纳,获得10
45秒前
弯弯的小河完成签到,获得积分10
45秒前
54秒前
瘦瘦的迎南完成签到 ,获得积分10
55秒前
苏子轩完成签到 ,获得积分10
59秒前
ycw7777发布了新的文献求助10
1分钟前
1分钟前
su完成签到 ,获得积分10
1分钟前
1分钟前
搜集达人应助千陽采纳,获得10
1分钟前
qaplay完成签到 ,获得积分0
1分钟前
Zhusy完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798537
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679740
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353