神经形态工程学
MNIST数据库
计算机科学
人工神经网络
实现(概率)
奇异值分解
计算机体系结构
图层(电子)
前馈
人工智能
计算机工程
控制工程
数学
工程类
化学
统计
有机化学
作者
Kannan Udaya Mohanan,Seongjae Cho,Byung‐Gook Park
标识
DOI:10.1007/s10489-022-03783-y
摘要
Abstract This work focuses on the optimization of the structural complexity of a single-layer feedforward neural network (SLFN) for neuromorphic hardware implementation. The singular value decomposition (SVD) method is used for the determination of the effective number of neurons in the hidden layer for Modified National Institute of Standards and Technology (MNIST) dataset classification. The proposed method is also verified on a SLFN using weights derived from a synaptic transistor device. The effectiveness of this methodology in estimating the reduced number of neurons in the hidden layer makes this method highly useful in optimizing complex neural network architectures for their hardware realization.
科研通智能强力驱动
Strongly Powered by AbleSci AI