Identification and characterization of a fungal-selective glutaminyl tRNA synthetase inhibitor with potent activity against Candida albicans

白色念珠菌 生物 白色体 高通量筛选 酿酒酵母 计算生物学 基因 突变体 表型筛选 药物发现 抗真菌药 表型 生物化学 微生物学
作者
Alice Xue,Amanda O. Veri,Xiang Zhang,Ci Fu,Emma Lash,Kali R. Iyer,Nicole M. Revie,Nicole Robbins,Charles Boone,Chad L. Myers,Leah E. Cowen
出处
期刊:Access microbiology [Microbiology Society]
卷期号:3 (12)
标识
DOI:10.1099/acmi.cc2021.po0156
摘要

Candida albicans is the leading cause of systemic candidiasis. Effective treatment is threatened by a dearth of antifungal options and the emergence of resistance. Thus, there is an urgent need to identify novel therapeutic targets to expand our antifungal armamentarium. A promising approach is the discovery of essential genes, as most antimicrobials target essential bioprocesses. Despite detailed characterization of gene essentiality in Saccharomyces cerevisiae,defining essential targets in the pathogen of interest is necessary due to the high level of divergence between these organisms. Thus, using a machine learning algorithm we generated a comprehensive prediction of all genes essential in C. albicans . We leveraged our essentiality predictions with high-throughput screening and chemogenomic datasets to assign the mechanism of action of a previously uncharacterized compound. We identified T-035897 as a molecule with potent bioactivity against C. albicans . Prior chemogenomic profiling in S. cerevisiae suggested that T-035897 targets the glutaminyl tRNA synthetase Gln4, whose homolog in C. albicans was predicted and verified to be required for viability. To confirm the mechanism of T-035897 in C. albicans , we performed haploinsufficiency profiling,which supported Gln4as the target. In parallel, selection of resistant mutants and targeted sequencing uncovered substitutions in the Gln4 catalytic domain. Moreover, T-035897 inhibited translation in afluorescence-based reporter assay. Finally, T-035897 selectively abrogated fungal cell growth in a co-culture model with mammalian cells. Thus, we highlight the power of leveraging essentiality datasets in order to characterize compounds with potent antifungal activity in an effort to unveil novel therapeutic strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12完成签到,获得积分20
刚刚
刚刚
刚刚
小蘑菇应助Pendulium采纳,获得10
1秒前
在水一方应助海诺采纳,获得10
1秒前
好好发布了新的文献求助10
1秒前
秀儿发布了新的文献求助10
2秒前
玩命的萃应助坚定镜子采纳,获得10
2秒前
所所应助wenjing采纳,获得10
3秒前
3秒前
3秒前
清淮完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
汤磊发布了新的文献求助10
5秒前
lize5493发布了新的文献求助10
6秒前
6秒前
柴郡喵完成签到,获得积分10
6秒前
贝贝贝完成签到,获得积分10
6秒前
6秒前
赏金猎人John_Wang完成签到,获得积分10
6秒前
6秒前
7秒前
shuang0116完成签到,获得积分0
7秒前
7秒前
路过蜻蜓完成签到,获得积分10
7秒前
7秒前
qzdy完成签到,获得积分10
9秒前
9秒前
9秒前
周浅完成签到,获得积分10
9秒前
xieben完成签到 ,获得积分10
10秒前
10秒前
在水一方应助a怪采纳,获得10
10秒前
xiaoyezi123完成签到,获得积分10
10秒前
lize5493完成签到,获得积分10
10秒前
Horizon应助忧虑的寄文采纳,获得10
10秒前
michael发布了新的文献求助10
10秒前
好好完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490624
求助须知:如何正确求助?哪些是违规求助? 4589068
关于积分的说明 14423619
捐赠科研通 4521153
什么是DOI,文献DOI怎么找? 2477182
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329