材料科学
生物材料
数字图像相关
断裂(地质)
复合材料
GSM演进的增强数据速率
原位
点(几何)
断裂力学
表征(材料科学)
压力(语言学)
结构工程
生物医学工程
计算机科学
几何学
数学
工程类
人工智能
纳米技术
语言学
哲学
物理
气象学
作者
Saeid Ghouli,M.R. Ayatollahi,Bahador Bahrami,Jamaloddin Jamali
标识
DOI:10.1016/j.tafmec.2021.103211
摘要
The present article promotes the usage of the digital image correlation (DIC) technique to determine the in‑situ stress and predict the onset of fracture in a cracked dental biomaterial sample. For this purpose, the elastic and fracture properties of the dental material are measured via the DIC method. To perform mixed mode fracture experiments, a modified single edge notched bend (SENB) specimen with varying crack length is introduced and utilised. From the theoretical point of view, we next implement a stress-based fracture criterion and combine it with two different critical distance models. In this regard, the in‑situ stress is formulated using the data from the DIC analysis conjugated with a supervised learning algorithm. Finally, the crack growth angle and fracture load for the tested biomaterial specimens are estimated, the comparison of which with the experimental measurements reveals good correlation.
科研通智能强力驱动
Strongly Powered by AbleSci AI