增采样
计算机科学
姿势
人工智能
融合机制
背景(考古学)
保险丝(电气)
特征(语言学)
计算机视觉
任务(项目管理)
模式识别(心理学)
特征提取
三维姿态估计
机器学习
图像(数学)
融合
哲学
工程类
古生物学
电气工程
经济
管理
脂质双层融合
生物
语言学
作者
Jingyang Zhou,Guangzhao Wen,Yu Zhang,Peng Geng
标识
DOI:10.1117/1.jei.31.6.063001
摘要
Human pose estimation is a fundamental yet challenging task in computer vision. Although many methods have achieved significant improvement, they are still insufficient for the fusion of feature maps at different stages, such as the stacked hourglass network (SHNet). The SHNet is a classic human pose estimation network that extracts multiscale features through stacked multistage downsampling and upsampling operations. We propose a multistage attention mechanism to fuse the multistage feature maps. Furthermore, we apply it in the SHNet to propose a multistage attention network (MANet). In the experiments, we demonstrated the effectiveness of MANet in human pose estimation on the common objects in context dataset and the MPII human pose dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI