Modality-invariant temporal representation learning for multimodal sentiment classification

计算机科学 人工智能 模式 模态(人机交互) 分类 时间戳 不变(物理) 机器学习 模式识别(心理学) 数学 社会科学 数学物理 计算机安全 社会学
作者
Hao Sun,Jiaqing Liu,Yen‐Wei Chen,Lanfen Lin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 504-514 被引量:25
标识
DOI:10.1016/j.inffus.2022.10.031
摘要

Multimodal sentiment classification is a notable research field that aims to refine sentimental information and classify the sentiment tendency from sequential multimodal data. Most existing sentimental recognition algorithms explore multimodal fusion schemes that achieve good performance. However, there are two key challenges to overcome. First, it is essential to effectively extract inter- and intra-modality features prior to fusion, while simultaneously reducing ambiguity. The second challenge is how to learn modality-invariant representations that capture the underlying similarities. In this paper, we present a modality-invariant temporal learning technique and a new gated inter-modality attention mechanism to overcome these issues. For the first challenge, our proposed gated inter-modality attention mechanism performs modality interactions and filters inconsistencies from multiple modalities in an adaptive manner. We also use parallel structures to learn more comprehensive sentimental information in pairs (i.e., acoustic and visual). In addition, to address the second problem, we treat each modality as a multivariate Gaussian distribution (considering each timestamp as a single Gaussian distribution) and use the KL divergence to capture the implicit temporal distribution-level similarities. These strategies are helpful in reducing domain shifts between different modalities and extracting effective sequential modality-invariant representations. We have conducted experiments on several public datasets (i.e., YouTube and MOUD) and the results show that our proposed method outperforms the state-of-the-art multimodal sentiment categorization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生若梦完成签到,获得积分10
刚刚
刚刚
刚刚
goodgoodstudy发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
111231完成签到,获得积分10
2秒前
动听涔雨完成签到,获得积分10
2秒前
坦率的匪应助Annora采纳,获得20
2秒前
Flyzhang发布了新的文献求助10
2秒前
5秒前
科研通AI6应助西瓜采纳,获得10
6秒前
111231发布了新的文献求助10
6秒前
打卡下班应助虚幻心锁采纳,获得10
7秒前
keyan完成签到 ,获得积分10
8秒前
8秒前
coconut发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
情怀应助完美的老头采纳,获得10
10秒前
奔铂儿钯完成签到,获得积分10
11秒前
科研通AI2S应助顺心绾绾采纳,获得10
12秒前
嗯呐完成签到,获得积分10
12秒前
14秒前
我爱罗发布了新的文献求助10
14秒前
香蕉觅云应助栗子采纳,获得10
15秒前
大海完成签到 ,获得积分10
15秒前
16秒前
16秒前
杨柳发布了新的文献求助10
16秒前
17秒前
星辰大海应助李键刚采纳,获得10
17秒前
领导范儿应助Yang_728采纳,获得30
17秒前
18秒前
YH发布了新的文献求助10
19秒前
20秒前
20秒前
Luke发布了新的文献求助10
20秒前
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239435
求助须知:如何正确求助?哪些是违规求助? 3773195
关于积分的说明 11849854
捐赠科研通 3428981
什么是DOI,文献DOI怎么找? 1881887
邀请新用户注册赠送积分活动 933971
科研通“疑难数据库(出版商)”最低求助积分说明 840639