Modality-invariant temporal representation learning for multimodal sentiment classification

计算机科学 人工智能 模式 模态(人机交互) 分类 时间戳 不变(物理) 机器学习 模式识别(心理学) 数学 社会科学 数学物理 计算机安全 社会学
作者
Hao Sun,Jiaqing Liu,Yen‐Wei Chen,Lanfen Lin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 504-514 被引量:25
标识
DOI:10.1016/j.inffus.2022.10.031
摘要

Multimodal sentiment classification is a notable research field that aims to refine sentimental information and classify the sentiment tendency from sequential multimodal data. Most existing sentimental recognition algorithms explore multimodal fusion schemes that achieve good performance. However, there are two key challenges to overcome. First, it is essential to effectively extract inter- and intra-modality features prior to fusion, while simultaneously reducing ambiguity. The second challenge is how to learn modality-invariant representations that capture the underlying similarities. In this paper, we present a modality-invariant temporal learning technique and a new gated inter-modality attention mechanism to overcome these issues. For the first challenge, our proposed gated inter-modality attention mechanism performs modality interactions and filters inconsistencies from multiple modalities in an adaptive manner. We also use parallel structures to learn more comprehensive sentimental information in pairs (i.e., acoustic and visual). In addition, to address the second problem, we treat each modality as a multivariate Gaussian distribution (considering each timestamp as a single Gaussian distribution) and use the KL divergence to capture the implicit temporal distribution-level similarities. These strategies are helpful in reducing domain shifts between different modalities and extracting effective sequential modality-invariant representations. We have conducted experiments on several public datasets (i.e., YouTube and MOUD) and the results show that our proposed method outperforms the state-of-the-art multimodal sentiment categorization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
4秒前
阿里山完成签到,获得积分10
4秒前
鲫鱼发布了新的文献求助10
6秒前
7秒前
行走的猫发布了新的文献求助10
8秒前
小炒肉完成签到,获得积分10
9秒前
老默完成签到,获得积分10
10秒前
芙瑞完成签到 ,获得积分10
11秒前
Mcling完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
14秒前
科研通AI5应助YJ采纳,获得10
14秒前
legend完成签到,获得积分10
15秒前
15秒前
16秒前
Ava应助害羞晋鹏采纳,获得10
18秒前
一王打尽发布了新的文献求助10
18秒前
浪浪山完成签到,获得积分10
19秒前
Stephen123发布了新的文献求助10
20秒前
鲫鱼完成签到,获得积分10
21秒前
YS完成签到 ,获得积分10
21秒前
23秒前
24秒前
24秒前
25秒前
zpp完成签到 ,获得积分10
25秒前
26秒前
义气的如松完成签到,获得积分10
27秒前
YJ发布了新的文献求助10
29秒前
29秒前
星辰大海应助行走的猫采纳,获得10
30秒前
31秒前
Callan发布了新的文献求助10
31秒前
32秒前
平安喜乐发布了新的文献求助10
32秒前
34秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845043
求助须知:如何正确求助?哪些是违规求助? 3387239
关于积分的说明 10548500
捐赠科研通 3107967
什么是DOI,文献DOI怎么找? 1712311
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774706