已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Soil information on a regional scale: Two machine learning based approaches for predicting saturated hydraulic conductivity

Pedotransfer函数 导水率 土壤图 数字土壤制图 土壤科学 环境科学 土壤质地 空间变异性 水文学(农业) 计算机科学 土壤水分 地质学 数学 岩土工程 统计
作者
Hanna Zeitfogel,Moritz Feigl,Karsten Schulz
出处
期刊:Geoderma [Elsevier BV]
卷期号:433: 116418-116418 被引量:3
标识
DOI:10.1016/j.geoderma.2023.116418
摘要

Saturated hydraulic conductivity (Ksat) and other soil (hydraulic) properties are fundamental for applications that depend on modeling hydrological processes, such as the quantification of future groundwater recharge rates. Yet, for most areas in the world, local soil information is lacking. Additionally, access to local soil surveys is often restricted or costly. Available global and regional digital soil mapping (DSM) products differ in scale and degree of data aggregation, as well as in spatial coverage. Ksat – and soil properties in general – are also characterized by a high spatial variability at all scales. Most often, there is no single data product available that covers the whole study area and still displays the variability of local soil observations. Thus, it is often a challenge to combine and predict soil data from different sources and resolutions while preserving the characteristically high spatial variability of soil properties. This study develops and compares two approaches for producing spatially distributed Ksat maps. First, an indirect approach based on two machine learning (ML) models – eXtreme Gradient Boosting (XGBoost) and feed-forward neural network (FNN) – that are trained with available local soil data sources and environmental raster datasets to predict the soil parameters sand, silt, clay, and organic matter content. Ksat is then determined by applying existing pedotransfer-functions (PTFs) on these regionalized soil parameters. Second, a direct approach in which ML models are directly trained with available soil hydraulic datasets to predict Ksat. Both approaches are applied to predict Ksat for Austria. While the resulting soil property maps of the indirect approach are able to largely reproduce the original data variability, the prediction of Ksat includes high levels of uncertainties and the predicted vertical distribution of Ksat is not plausible. The spatial distribution of Ksat in the direct approach resembles available global Ksat maps. In the existing global Ksat maps as well as in the results of the direct approach the small-scale variability of Ksat is reduced. In both approaches XGBoost outperforms FNN. The derived soil property maps help to reduce current gaps in soil data availability for Austria, but also highlight the need for additional Ksat field data acquisition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰棒比冰冰完成签到 ,获得积分10
刚刚
隐形曼青应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
5秒前
6秒前
852应助Zoey采纳,获得10
7秒前
脑洞疼应助Zoey采纳,获得10
7秒前
Jasper应助Zoey采纳,获得30
7秒前
情怀应助Zoey采纳,获得10
7秒前
MCC应助Zoey采纳,获得10
7秒前
于是乎完成签到 ,获得积分10
8秒前
sensen完成签到,获得积分10
9秒前
Leisle发布了新的文献求助10
9秒前
Ethan发布了新的文献求助10
10秒前
传奇3应助ff567采纳,获得10
11秒前
xx完成签到 ,获得积分10
11秒前
吴泽旭发布了新的文献求助10
12秒前
12秒前
12秒前
雷雷完成签到,获得积分10
12秒前
12秒前
14秒前
lxlcx应助妖精采纳,获得30
15秒前
15秒前
17秒前
雷雷发布了新的文献求助10
18秒前
Eason小川发布了新的文献求助10
18秒前
wzh发布了新的文献求助10
19秒前
雨前知了发布了新的文献求助10
19秒前
Leisle完成签到,获得积分10
22秒前
传奇3应助wzh采纳,获得10
23秒前
KM发布了新的文献求助10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833613
求助须知:如何正确求助?哪些是违规求助? 3376091
关于积分的说明 10491598
捐赠科研通 3095611
什么是DOI,文献DOI怎么找? 1704479
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771775