亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Soil information on a regional scale: Two machine learning based approaches for predicting saturated hydraulic conductivity

Pedotransfer函数 导水率 土壤图 数字土壤制图 土壤科学 环境科学 土壤质地 空间变异性 水文学(农业) 计算机科学 土壤水分 地质学 数学 岩土工程 统计
作者
Hanna Zeitfogel,Moritz Feigl,Karsten Schulz
出处
期刊:Geoderma [Elsevier BV]
卷期号:433: 116418-116418 被引量:3
标识
DOI:10.1016/j.geoderma.2023.116418
摘要

Saturated hydraulic conductivity (Ksat) and other soil (hydraulic) properties are fundamental for applications that depend on modeling hydrological processes, such as the quantification of future groundwater recharge rates. Yet, for most areas in the world, local soil information is lacking. Additionally, access to local soil surveys is often restricted or costly. Available global and regional digital soil mapping (DSM) products differ in scale and degree of data aggregation, as well as in spatial coverage. Ksat – and soil properties in general – are also characterized by a high spatial variability at all scales. Most often, there is no single data product available that covers the whole study area and still displays the variability of local soil observations. Thus, it is often a challenge to combine and predict soil data from different sources and resolutions while preserving the characteristically high spatial variability of soil properties. This study develops and compares two approaches for producing spatially distributed Ksat maps. First, an indirect approach based on two machine learning (ML) models – eXtreme Gradient Boosting (XGBoost) and feed-forward neural network (FNN) – that are trained with available local soil data sources and environmental raster datasets to predict the soil parameters sand, silt, clay, and organic matter content. Ksat is then determined by applying existing pedotransfer-functions (PTFs) on these regionalized soil parameters. Second, a direct approach in which ML models are directly trained with available soil hydraulic datasets to predict Ksat. Both approaches are applied to predict Ksat for Austria. While the resulting soil property maps of the indirect approach are able to largely reproduce the original data variability, the prediction of Ksat includes high levels of uncertainties and the predicted vertical distribution of Ksat is not plausible. The spatial distribution of Ksat in the direct approach resembles available global Ksat maps. In the existing global Ksat maps as well as in the results of the direct approach the small-scale variability of Ksat is reduced. In both approaches XGBoost outperforms FNN. The derived soil property maps help to reduce current gaps in soil data availability for Austria, but also highlight the need for additional Ksat field data acquisition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
2秒前
2秒前
LJL完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
Dr.ming发布了新的文献求助10
20秒前
懵懂的子骞完成签到 ,获得积分10
27秒前
劳健龙完成签到 ,获得积分10
28秒前
半城微凉应助tdtk采纳,获得50
29秒前
45秒前
Rita发布了新的文献求助10
50秒前
魔幻的小蘑菇完成签到 ,获得积分10
58秒前
豆子应助tdtk采纳,获得50
59秒前
1分钟前
wohebaole发布了新的文献求助10
1分钟前
乐乐应助巴斯巴采纳,获得10
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
LC完成签到 ,获得积分10
1分钟前
guan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
豆子应助tdtk采纳,获得50
1分钟前
仔仔完成签到 ,获得积分10
1分钟前
背后梦安发布了新的文献求助10
1分钟前
guan完成签到,获得积分10
1分钟前
orixero应助淡淡孤丝采纳,获得10
1分钟前
陶醉的蜜蜂完成签到,获得积分10
1分钟前
1分钟前
CodeCraft应助WanPeng采纳,获得10
1分钟前
风雨中飘摇应助tdtk采纳,获得50
1分钟前
1分钟前
0000077777完成签到,获得积分10
1分钟前
栗子发布了新的文献求助10
1分钟前
Harrison发布了新的文献求助10
1分钟前
Abdory完成签到,获得积分10
1分钟前
1分钟前
WanPeng发布了新的文献求助10
1分钟前
1分钟前
豆子应助tdtk采纳,获得50
1分钟前
shentaii完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972713
求助须知:如何正确求助?哪些是违规求助? 3517023
关于积分的说明 11186053
捐赠科研通 3252489
什么是DOI,文献DOI怎么找? 1796477
邀请新用户注册赠送积分活动 876435
科研通“疑难数据库(出版商)”最低求助积分说明 805629