Reinforcement learning-based multi-strategy cuckoo search algorithm for 3D UAV path planning

强化学习 运动规划 计算机科学 布谷鸟搜索 数学优化 水准点(测量) 路径(计算) 趋同(经济学) 人工智能 算法 机器人 数学 粒子群优化 经济增长 经济 大地测量学 程序设计语言 地理
作者
Xiaobing Yu,Wenguan Luo
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119910-119910 被引量:52
标识
DOI:10.1016/j.eswa.2023.119910
摘要

Unmanned aerial vehicles are applied extensively in various fields due to their advantages of low-cost, high-maneuverability, and easy-operation. However, the path planning problem of unmanned aerial vehicles, which directly determines the flight safety and efficiency, still remains challenging when building and optimizing the path model. To further study the path planning problem, we firstly construct it as a constrained optimization problem. The objective function considers the costs of path length and threat, and the constraints involve the collision and turning angle. Additionally, we employ the theory of B-Spline curve to represent the planned paths to facilitate the optimization of established model. Then, aiming at the poor searchability and slow convergence speed of current optimization methods, we propose a reinforcement learning-based multi-strategy cuckoo search algorithm. Specifically, we establish an innovative reinforcement learning-based multi-strategy mechanism and a reinforced switch parameter based on the theory of reinforcement learning. To verify the effectiveness of the proposed algorithm, extensive experiments are carried out on the CEC'17 benchmark test and different three-dimensional path planning problems. Detailed statistical analysis of the experimental results confirm the superiority of our proposed algorithm to the other well-established algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZRR发布了新的文献求助20
刚刚
1秒前
汉堡包应助Ly采纳,获得10
2秒前
rubylalala完成签到,获得积分10
3秒前
Captain发布了新的文献求助10
4秒前
5秒前
胡霖完成签到,获得积分10
6秒前
7秒前
爱学习的小木应助花生采纳,获得10
8秒前
hachii完成签到,获得积分10
10秒前
alai完成签到,获得积分10
11秒前
哈哈哈发布了新的文献求助10
11秒前
fox完成签到 ,获得积分10
11秒前
dfx完成签到,获得积分10
12秒前
YP发布了新的文献求助10
12秒前
Orange应助dddd采纳,获得10
12秒前
六月完成签到 ,获得积分10
13秒前
老王发布了新的文献求助10
13秒前
在曼谷的春关注了科研通微信公众号
14秒前
fangfang完成签到,获得积分10
14秒前
烤地瓜完成签到,获得积分10
15秒前
自由雁兰关注了科研通微信公众号
17秒前
18秒前
橘子味完成签到,获得积分10
20秒前
21秒前
22秒前
某某发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
哈哈哈完成签到,获得积分20
26秒前
科目三应助Amanda_Huang采纳,获得10
26秒前
cruise发布了新的文献求助10
27秒前
zebra完成签到,获得积分10
28秒前
懒123发布了新的文献求助10
29秒前
脑洞疼应助hahahayi采纳,获得10
29秒前
小河马发布了新的文献求助10
31秒前
34秒前
ss关闭了ss文献求助
36秒前
科研通AI5应助六月歌者采纳,获得10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789385
求助须知:如何正确求助?哪些是违规求助? 3334371
关于积分的说明 10269729
捐赠科研通 3050864
什么是DOI,文献DOI怎么找? 1674189
邀请新用户注册赠送积分活动 802532
科研通“疑难数据库(出版商)”最低求助积分说明 760714