亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Cascade Model to Detect and Segment Lung Nodule Using YOLOv8 and Resnet50U‐Net

分割 计算机科学 假阳性悖论 人工智能 背景(考古学) 模式识别(心理学) 图像分割 结核(地质) 尺度空间分割 目标检测 计算机视觉 古生物学 生物
作者
Selma Mammeri,Mohamed Yassine Haouam,Mohamed Amroune,Issam Bendib,Elhadj Benkhelifa
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (1)
标识
DOI:10.1002/ima.70023
摘要

ABSTRACT In our research, we introduce a sophisticated “two‐stage” or cascade model designed to enhance the precision of lung nodule analysis. This innovative approach integrates two crucial processes: detection and segmentation. In the initial stage, a specialized object detection algorithm efficiently scans medical images to identify potential areas of interest, specifically focusing on lung nodules. This plays a crucial role in minimizing the segmentation area, particularly in the context of lung imaging, where the structures exhibit heterogeneity. This algorithm helps focus the segmentation process only on the relevant areas, reducing unnecessary computation and potential errors. Subsequently, the second stage employs advanced segmentation algorithms to precisely delineate the boundaries of the identified nodules, providing detailed and accurate contours. The combination of object detection and segmentation not only enhances the overall accuracy of lung cancer detection but also minimizes false positives, streamlines the workflow for radiologists, and provides a more comprehensive understanding of potential abnormalities. Additionally, it improves the efficiency and accuracy of segmentation, especially in cases where the complexity and heterogeneity of the lung structure make the segmentation task more challenging. This proposed method has been tested on the LIDC‐IDRI dataset, demonstrating favorable results in both nodule detection and segmentation steps, with 81.3% mAP and 83.54% DSC, respectively. These results serve as evidence that the proposed method effectively improves the accuracy of lung nodule detection and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
1秒前
樱桃小贩完成签到,获得积分10
3秒前
ww完成签到,获得积分10
4秒前
79完成签到 ,获得积分10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
7秒前
Lyn完成签到 ,获得积分10
7秒前
爱撒娇的紫南完成签到 ,获得积分10
10秒前
所所应助科研捣蛋鬼采纳,获得10
10秒前
xj0806完成签到 ,获得积分10
10秒前
轻松香寒完成签到,获得积分10
12秒前
LB完成签到,获得积分10
15秒前
刘刘完成签到 ,获得积分10
19秒前
21秒前
22秒前
23秒前
嘟嘟嘟发布了新的文献求助10
26秒前
shuyi_liu发布了新的文献求助10
29秒前
shuyi_liu完成签到,获得积分10
33秒前
37秒前
yoyo完成签到,获得积分10
37秒前
失眠克星发布了新的文献求助10
40秒前
41秒前
Leon完成签到 ,获得积分0
46秒前
涂穆完成签到,获得积分10
47秒前
丘比特应助小台采纳,获得10
55秒前
天天快乐应助1121采纳,获得10
57秒前
李健应助妖精采纳,获得100
58秒前
朝闻道完成签到 ,获得积分10
58秒前
深情安青应助zhj采纳,获得10
1分钟前
TT发布了新的文献求助10
1分钟前
1分钟前
小台发布了新的文献求助10
1分钟前
1分钟前
1分钟前
chenting完成签到 ,获得积分10
1分钟前
苏梗完成签到 ,获得积分10
1分钟前
江小白完成签到,获得积分0
1分钟前
齐桉完成签到 ,获得积分10
1分钟前
skbkbe完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833694
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492178
捐赠科研通 3095704
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792