Structurally Transformable and Reconfigurable Hydrogel-Based Mechanical Metamaterials and Their Application in Biomedical Stents

材料科学 超材料 自愈水凝胶 纳米技术 仿生学 生物医学工程 光电子学 高分子化学 工程类
作者
Sirawit Pruksawan,Rodney Teo,Yu Hong Cheang,Yi Ting Chong,Evelyn Ling Ling Ng,Fuke Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c20599
摘要

Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design. Here, we propose structurally transformable and reconfigurable hydrogel-based mechanical metamaterials through three-dimensional (3D) printing of lattice structures composed of multishape-memory poly(acrylic acid)-chitosan hydrogels. By incorporating reversible shape-memory mechanisms that control the structural arrangements of the lattice, these metamaterials can exhibit transformable and reconfigurable mechanical characteristics under various environmental conditions, including auxetic behavior, with Poisson's ratios switchable from negative to zero or positive. These adaptable mechanical responses across different states arise from structural changes in lattice, surpassing the gradual changes observed in conventional stimuli-responsive materials. The application of these metamaterials in multimode biomedical stents demonstrates their adaptability in practical settings, allowing them to transition between expandable, nonexpandable, and shrinkable states, with corresponding Poisson's ratios. By integrating multishape-memory soft materials with metamaterial design, we can significantly enhance their functionality, advancing the development of smart biomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称完成签到,获得积分10
1秒前
日富一日完成签到,获得积分10
1秒前
KYDD完成签到,获得积分10
4秒前
科研通AI5应助杳子尧采纳,获得10
4秒前
4秒前
斯文败类应助踏实的依柔采纳,获得10
5秒前
搜集达人应助star采纳,获得10
6秒前
7秒前
科研通AI5应助小林神采纳,获得10
9秒前
JasonSun完成签到,获得积分10
9秒前
Anna爱学习发布了新的文献求助10
9秒前
lezongyang发布了新的文献求助10
11秒前
12秒前
科研通AI5应助seraphmay采纳,获得10
13秒前
shadow完成签到,获得积分10
14秒前
李爱国应助沉静白翠采纳,获得10
14秒前
冷眸完成签到 ,获得积分10
16秒前
陈瑞娟完成签到 ,获得积分10
16秒前
16秒前
啦啦啦发布了新的文献求助10
17秒前
认真的不评完成签到,获得积分10
18秒前
烟花应助晴朗采纳,获得10
19秒前
20秒前
思源应助Panchael采纳,获得10
21秒前
xiaofeiyan完成签到 ,获得积分10
22秒前
John完成签到,获得积分10
22秒前
star发布了新的文献求助10
23秒前
研友_VZG7GZ应助活人微die采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
啦啦啦完成签到,获得积分20
25秒前
沉静白翠发布了新的文献求助10
25秒前
26秒前
脑洞疼应助Karry采纳,获得10
28秒前
直率的钢铁侠完成签到,获得积分10
29秒前
maoxiaogou完成签到,获得积分10
29秒前
wang5945完成签到 ,获得积分10
29秒前
12334完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782938
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235420
捐赠科研通 3043338
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759033