Deep Gated Neural Network With Self-Attention Mechanism for Survival Analysis

计算机科学 机制(生物学) 人工神经网络 人工智能 数据挖掘 认识论 哲学
作者
Xulin Yang,Hang Qiu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/jbhi.2024.3507109
摘要

Survival analysis is commonly used to model the time distributions of the first occurrences of events of interest, and it has widespread medical applications. Many previous studies learned the relationship between risk and covariates by making strong assumptions such as proportional hazards. However, these assumptions limit the performance somewhat. Moreover, few studies consider the temporal patterns in feature effects. This paper proposed the novel framework of a deep gated neural network with self-attention mechanism (SA-DGNet) for survival analysis with single risk and competing risks. SA-DGNet transforms the problem of survival analysis into a time-series forecasting problem that treats time as an additional input covariate and estimates the probability mass function of the first hitting time. No assumptions are made about the distribution of survival times, and a deep gated neural network module is used to calculate the time-dependent and nonlinear effects of covariates on survival outcomes. Meanwhile, for enhanced data perception, a self-attention module comprising multi-scale time-aware self-attention and scaled dot-product self-attention is designed. The results of performance evaluation on multiple real-world datasets indicate that SA-DGNet significantly outperforms previous state-of-the-art methods. This study demonstrates the potential of gated neural networks and self-attention mechanisms in survival analysis, and it provides an effective method for risk prediction based on structured data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小刀yeye采纳,获得10
刚刚
1秒前
迷路的寄风完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
paradise完成签到,获得积分20
2秒前
3秒前
4秒前
赘婿应助小马采纳,获得10
5秒前
5秒前
6秒前
死神发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
咕咕咕完成签到,获得积分10
10秒前
10秒前
10秒前
阔达宝莹完成签到,获得积分20
10秒前
get发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
zgnb发布了新的文献求助10
12秒前
可乐喝九瓶完成签到,获得积分10
14秒前
阔达宝莹发布了新的文献求助10
14秒前
赘婿应助wait采纳,获得10
15秒前
英俊的铭应助zgnb采纳,获得10
16秒前
16秒前
犹豫友桃发布了新的文献求助10
16秒前
Akim应助叮铃铛采纳,获得10
17秒前
执着烧鹅发布了新的文献求助10
17秒前
静静的远山完成签到,获得积分10
18秒前
CodeCraft应助不吃鸡蛋采纳,获得10
20秒前
20秒前
wow完成签到 ,获得积分10
21秒前
小马发布了新的文献求助10
21秒前
JamesPei应助单车采纳,获得10
21秒前
HHH发布了新的文献求助10
22秒前
lllkkk发布了新的文献求助10
23秒前
canghong完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073569
求助须知:如何正确求助?哪些是违规求助? 4293683
关于积分的说明 13379160
捐赠科研通 4115101
什么是DOI,文献DOI怎么找? 2253421
邀请新用户注册赠送积分活动 1258185
关于科研通互助平台的介绍 1191071