BiTS-SleepNet: An Attention-Based Two Stage Temporal-Spectral Fusion Model for Sleep Staging With Single-Channel EEG

脑电图 计算机科学 频道(广播) 睡眠(系统调用) 睡眠阶段 语音识别 人工智能 阶段(地层学) 光谱分析 模式识别(心理学) 心理学 多导睡眠图 电信 神经科学 物理 操作系统 古生物学 生物 量子力学 光谱学
作者
Zhaoyang Cong,Minghui Zhao,Hongxiang Gao,Meng Lou,Guowei Zheng,Ziyang Wang,Xingyao Wang,Chang Yan,Li Ling,Jianqing Li,Chengyu Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3523908
摘要

Automated sleep staging is crucial for assessing sleep quality and diagnosing sleep-related diseases. Single-channel EEG has attracted significant attention due to its portability and accessibility. Most existing automated sleep staging methods often emphasize temporal information and neglect spectral information, the relationship between sleep stage contextual features, and transition rules between sleep stages. To overcome these obstacles, this paper proposes an attention-based two stage temporalspectral fusion model (BiTS-SleepNet). The BiTS-SleepNet stage 1 network consists of a dual-stream temporal-spectral feature extractor branch and a temporal-spectral feature fusion module based on the cross-attention mechanism. These blocks are designed to autonomously extract and integrate the temporal and spectral features of EEG signals, leveraging temporal-spectral fusion information to discriminate between different sleep stages. The BiTS-SleepNet stage 2 network includes a feature context learning module (FCLM) based on Bi-GRU and a transition rules learning module (TRLM) based on the Conditional Random Field (CRF). The FCLM optimizes preliminary sleep stage results from the stage 1 network by learning dependencies between features of multiple adjacent stages. The TRLM additionally employs transition rules to optimize overall outcomes. We evaluated the BiTS-SleepNet on three public datasets: Sleep-EDF-20, SleepEDF-78, and SHHS, achieving accuracies of 88.50%, 85.09%, and 87.01%, respectively. The experimental results demonstrate that BiTS-SleepNet achieves competitive performance in comparison to recently published methods. This highlights its promise for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
yyyy发布了新的文献求助10
1秒前
1秒前
派大星完成签到,获得积分10
1秒前
易安发布了新的文献求助10
2秒前
WWY完成签到,获得积分10
2秒前
lzz发布了新的文献求助10
2秒前
xuxu完成签到,获得积分10
2秒前
Eton完成签到,获得积分10
2秒前
3秒前
3秒前
zs_123完成签到,获得积分10
3秒前
qiao完成签到,获得积分10
4秒前
绺妙完成签到,获得积分20
4秒前
4秒前
Worenxian完成签到,获得积分10
4秒前
沈华炜完成签到,获得积分10
5秒前
zhy发布了新的文献求助10
5秒前
海参完成签到,获得积分10
5秒前
6秒前
fyl完成签到,获得积分10
6秒前
多喝水完成签到,获得积分10
6秒前
6秒前
7秒前
LIUKANG完成签到,获得积分10
8秒前
8秒前
欢喜的之瑶完成签到,获得积分10
9秒前
Able阿拉基完成签到,获得积分10
9秒前
9秒前
热狗完成签到 ,获得积分10
9秒前
10秒前
10秒前
顾矜应助无谋采纳,获得10
10秒前
10秒前
11秒前
勤恳的德地完成签到,获得积分10
11秒前
Adi完成签到,获得积分10
12秒前
淡然子轩完成签到,获得积分10
12秒前
2428完成签到,获得积分10
12秒前
CC完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907170
求助须知:如何正确求助?哪些是违规求助? 3452704
关于积分的说明 10872017
捐赠科研通 3178503
什么是DOI,文献DOI怎么找? 1755926
邀请新用户注册赠送积分活动 849242
科研通“疑难数据库(出版商)”最低求助积分说明 791387