清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of PFAS-Free Locally Concentrated Ionic Liquid Electrolytes for High-Energy Lithium and Aluminum Metal Batteries

电解质 阳极 离子液体 法拉第效率 锂(药物) 化学工程 化学 材料科学 电池(电) 无机化学 有机化学 电极 医学 物理化学 工程类 内分泌学 催化作用 功率(物理) 物理 量子力学
作者
Xu Liu,Cheng Xu,Henry Adenusi,Yuping Wu,Stefano Passerini
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00653
摘要

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.Ionic liquid electrolytes (ILEs), composed of metal salts and ionic liquids, offer a safer alternative due to their nonflammable nature and high thermal stability. Moreover, they can enable high Coulombic efficiency (CE) for lithium metal anodes (LMAs) and allow reversible stripping/plating of various post-lithium metals for battery application, e.g., aluminum metal batteries (AMBs). Despite these advantages, ILEs suffer from high viscosity, which impairs ion transport and wettability. To resolve these challenges, researchers have developed locally concentrated ionic liquid electrolytes (LCILEs) by adding low-viscosity nonsolvating cosolvents, e.g., hydrofluoroether, to ILEs. These cosolvents do not coordinate with cationic charge carriers, thereby reducing viscosity and improving ion transport without compromising the compatibility of electrolytes with metal anodes. However, due to the inherent difference of molecular organic solvents and ionic liquids full of charged species, the most used nonsolvating cosolvents, i.e., hydrofluoroether, are less effective for ILEs with respect to concentrated electrolytes based on conventional organic solvents. Moreover, hydrofluoroether contains environmentally problematic -CF3 and/or -CF2- groups, i.e., per- and polyfluoroalkyl substances (PFAS), with their use subject to restrictions.In this Account, we provide an overview of the endeavors of our research group on the development of PFAS-free LCILEs for high-energy LMBs and AMBs. First, aromatic organic cations and aromatic less/nonfluorinated cosolvents are proposed to weaken the organic cation-anion interaction and strengthen the organic cation-cosolvent interaction, respectively. This is with consideration of the uncovered phase nanosegregation structure of LCILEs that effectively reduces the viscosity and promotes the Li+ transport ability with respect to the conventional nonaromatic organic cations and highly fluorinated PFAS cosolvents. Then, the effect of electrolyte components that do not coordinate to Li+, including organic cations and nonsolvating cosolvents, on the SEI composition and LMA reversibility is presented, which confirms the feasibility of reaching a high lithium stripping/plating CE up to 99.7% in the developed PFAS-free LCILEs. In the subsequent discussion on cathode compatibility, we present that in addition to LiFePO4 with high cyclability but inferior energy density, nickel-rich layered oxide and sulfurized polyacrylonitrile (SPAN) can be employed to construct high-energy LMBs for PFAS-free LCILEs with different anodic stability. Additionally, the feasible application of the LCILE strategy to promote the kinetics of AMBs relying on a different anode chemistry is demonstrated. Lastly, future research directions with an emphasis on nonsolvating component optimization, electrolyte dynamics, and electrode/electrolyte interphase formation are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
张占完成签到,获得积分10
11秒前
精明一寡发布了新的文献求助30
15秒前
火焰向上发布了新的文献求助10
27秒前
火焰向上完成签到,获得积分10
36秒前
Tina酱完成签到 ,获得积分10
45秒前
科研阿白完成签到 ,获得积分10
46秒前
滕皓轩完成签到 ,获得积分20
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
英喆完成签到 ,获得积分10
1分钟前
Orange应助ChencanFang采纳,获得10
1分钟前
1分钟前
ChencanFang发布了新的文献求助10
2分钟前
冷艳的灭龙完成签到,获得积分10
2分钟前
Air完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
Otorhino完成签到 ,获得积分10
2分钟前
Cynthia完成签到 ,获得积分10
3分钟前
Obliviate完成签到,获得积分10
3分钟前
爱吃糖的羊完成签到,获得积分10
3分钟前
传奇完成签到 ,获得积分10
3分钟前
3分钟前
庄怀逸完成签到 ,获得积分10
3分钟前
桐桐应助精明一寡采纳,获得10
3分钟前
noss发布了新的文献求助10
3分钟前
3分钟前
精明一寡完成签到,获得积分10
3分钟前
精明一寡发布了新的文献求助10
3分钟前
自由的无色完成签到 ,获得积分10
4分钟前
Avicii完成签到 ,获得积分10
4分钟前
西山菩提完成签到,获得积分10
4分钟前
爱吃糖的羊关注了科研通微信公众号
4分钟前
MRJJJJ完成签到,获得积分10
4分钟前
青海盐湖所李阳阳完成签到 ,获得积分10
4分钟前
asdwind完成签到,获得积分10
4分钟前
4分钟前
5分钟前
枯藤老柳树完成签到,获得积分10
5分钟前
fishss完成签到 ,获得积分10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779193
求助须知:如何正确求助?哪些是违规求助? 3324782
关于积分的说明 10219874
捐赠科研通 3039903
什么是DOI,文献DOI怎么找? 1668502
邀请新用户注册赠送积分活动 798686
科研通“疑难数据库(出版商)”最低求助积分说明 758503