Development of PFAS-Free Locally Concentrated Ionic Liquid Electrolytes for High-Energy Lithium and Aluminum Metal Batteries

电解质 阳极 离子液体 法拉第效率 锂(药物) 化学工程 化学 材料科学 电池(电) 无机化学 有机化学 电极 物理 工程类 医学 内分泌学 物理化学 量子力学 催化作用 功率(物理)
作者
Xu Liu,Cheng Xu,Henry Adenusi,Yuping Wu,Stefano Passerini
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.accounts.4c00653
摘要

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.Ionic liquid electrolytes (ILEs), composed of metal salts and ionic liquids, offer a safer alternative due to their nonflammable nature and high thermal stability. Moreover, they can enable high Coulombic efficiency (CE) for lithium metal anodes (LMAs) and allow reversible stripping/plating of various post-lithium metals for battery application, e.g., aluminum metal batteries (AMBs). Despite these advantages, ILEs suffer from high viscosity, which impairs ion transport and wettability. To resolve these challenges, researchers have developed locally concentrated ionic liquid electrolytes (LCILEs) by adding low-viscosity nonsolvating cosolvents, e.g., hydrofluoroether, to ILEs. These cosolvents do not coordinate with cationic charge carriers, thereby reducing viscosity and improving ion transport without compromising the compatibility of electrolytes with metal anodes. However, due to the inherent difference of molecular organic solvents and ionic liquids full of charged species, the most used nonsolvating cosolvents, i.e., hydrofluoroether, are less effective for ILEs with respect to concentrated electrolytes based on conventional organic solvents. Moreover, hydrofluoroether contains environmentally problematic -CF3 and/or -CF2- groups, i.e., per- and polyfluoroalkyl substances (PFAS), with their use subject to restrictions.In this Account, we provide an overview of the endeavors of our research group on the development of PFAS-free LCILEs for high-energy LMBs and AMBs. First, aromatic organic cations and aromatic less/nonfluorinated cosolvents are proposed to weaken the organic cation-anion interaction and strengthen the organic cation-cosolvent interaction, respectively. This is with consideration of the uncovered phase nanosegregation structure of LCILEs that effectively reduces the viscosity and promotes the Li+ transport ability with respect to the conventional nonaromatic organic cations and highly fluorinated PFAS cosolvents. Then, the effect of electrolyte components that do not coordinate to Li+, including organic cations and nonsolvating cosolvents, on the SEI composition and LMA reversibility is presented, which confirms the feasibility of reaching a high lithium stripping/plating CE up to 99.7% in the developed PFAS-free LCILEs. In the subsequent discussion on cathode compatibility, we present that in addition to LiFePO4 with high cyclability but inferior energy density, nickel-rich layered oxide and sulfurized polyacrylonitrile (SPAN) can be employed to construct high-energy LMBs for PFAS-free LCILEs with different anodic stability. Additionally, the feasible application of the LCILE strategy to promote the kinetics of AMBs relying on a different anode chemistry is demonstrated. Lastly, future research directions with an emphasis on nonsolvating component optimization, electrolyte dynamics, and electrode/electrolyte interphase formation are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风完成签到,获得积分20
刚刚
声声慢发布了新的文献求助10
刚刚
SibetHu发布了新的文献求助10
刚刚
未来可期发布了新的文献求助10
1秒前
1秒前
1秒前
minever白完成签到,获得积分10
1秒前
1秒前
1秒前
无花果应助xiong采纳,获得10
1秒前
xixi完成签到,获得积分10
2秒前
xu'nuo完成签到,获得积分20
2秒前
2秒前
2秒前
林俊超发布了新的文献求助10
3秒前
liuqiusen发布了新的文献求助50
4秒前
jwj发布了新的文献求助10
4秒前
SY发布了新的文献求助10
4秒前
田様应助怡然含桃采纳,获得10
4秒前
小二郎应助石桂萌采纳,获得10
4秒前
柔弱蹇发布了新的文献求助10
5秒前
QL驳回了JamesPei应助
5秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
我是最棒的完成签到,获得积分10
5秒前
5秒前
6秒前
生动的煎蛋完成签到 ,获得积分10
6秒前
6秒前
6秒前
汎影发布了新的文献求助10
6秒前
6秒前
lihuanmoon发布了新的文献求助50
7秒前
阔达的水壶完成签到 ,获得积分10
7秒前
甜美枫发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
闹心应助科研通管家采纳,获得10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119221
求助须知:如何正确求助?哪些是违规求助? 4325033
关于积分的说明 13474993
捐赠科研通 4158168
什么是DOI,文献DOI怎么找? 2278841
邀请新用户注册赠送积分活动 1280578
关于科研通互助平台的介绍 1219352