A systematic review and meta‐analysis of AI‐enabled assessment in language learning: Design, implementation, and effectiveness

计算机科学 荟萃分析 教学设计 学习设计 教育技术 多媒体 数学教育 心理学 医学 内科学
作者
Angxuan Chen,Yuyue Zhang,Jiyou Jia,Min Liang,Yonghan Cha,Cher Ping Lim
出处
期刊:Journal of Computer Assisted Learning [Wiley]
被引量:10
标识
DOI:10.1111/jcal.13064
摘要

Abstract Background Language assessment plays a pivotal role in language education, serving as a bridge between students' understanding and educators' instructional approaches. Recently, advancements in Artificial Intelligence (AI) technologies have introduced transformative possibilities for automating and personalising language assessments. Objectives This article aims to explore the design and implementation of AI‐enabled assessment tools in language education, filling the research gaps regarding the impact of assessment type, intervention duration, education level, and first language learner/second language learner (L1/L2) on the effectiveness of AI‐enabled assessment tools in enhancing students' language learning outcome. Methods This study conducted a systematic review and meta‐analysis to examine 25 empirical studies from January 2012 to March 2024 from six databases (including EBSCO, ProQuest, Scopus, Web of Science, ACM Digital Library and CNKI). Results The predominant design in AI‐driven assessment tools is the structural AI architecture. These tools are most frequently deployed in classroom settings for upper primary students within a short duration. A subsequent meta‐analysis showed a medium overall effect size (Hedges's g = 0.390, p < 0.001) for the application of AI‐enabled assessment tools in enhancing students' language learning, underscoring their significant impact on language learning outcomes. This evidence robustly supports the practical utility of these tools in educational contexts. Conclusions The analysis of several moderator variables (i.e., assessment type, intervention duration, educational level and L1/L2 learners) and potential impacts on language learning performance indicates that AI‐enabled assessment could be more useful in language education with a proper implementation design. Future research could investigate diverse instructional designs for integrating AI‐based assessment tools in language education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何熙熙完成签到,获得积分10
刚刚
changping应助读书的时候采纳,获得10
2秒前
龚仕杰发布了新的文献求助10
3秒前
3秒前
小鱼儿发布了新的文献求助10
4秒前
4秒前
hei发布了新的文献求助30
5秒前
5秒前
苏蔚完成签到,获得积分10
5秒前
魁梧的秀发布了新的文献求助10
5秒前
6秒前
ZXB发布了新的文献求助10
6秒前
6秒前
114514发布了新的文献求助10
6秒前
NexusExplorer应助2339822272采纳,获得10
7秒前
8秒前
JamesPei应助hexuxin采纳,获得30
9秒前
独步天下完成签到,获得积分10
9秒前
Orange应助查查采纳,获得10
9秒前
charint发布了新的文献求助10
9秒前
10秒前
PQ完成签到,获得积分10
10秒前
10秒前
wqlllll发布了新的文献求助30
10秒前
小蘑菇应助saber采纳,获得10
11秒前
橙歌发布了新的文献求助10
11秒前
王鑫发布了新的文献求助10
11秒前
ali完成签到,获得积分10
12秒前
子胥完成签到,获得积分10
12秒前
彭于晏应助坚强的云朵采纳,获得10
12秒前
量子星尘发布了新的文献求助20
13秒前
长毛象发布了新的文献求助10
14秒前
ZXB完成签到,获得积分10
14秒前
15秒前
16秒前
孙子豪发布了新的文献求助10
16秒前
Serein发布了新的文献求助10
17秒前
17秒前
张远幸发布了新的文献求助10
17秒前
酷波er应助秀儿采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017515
求助须知:如何正确求助?哪些是违规求助? 4257115
关于积分的说明 13267795
捐赠科研通 4061445
什么是DOI,文献DOI怎么找? 2221321
邀请新用户注册赠送积分活动 1230573
关于科研通互助平台的介绍 1153212