Multigas Identification by Temperature-Modulated Operation of a Single Anodic Aluminum Oxide Gas Sensor Platform and Deep Learning Algorithm

阳极氧化铝 鉴定(生物学) 阳极 算法 计算机科学 氧化铝 氧化物 材料科学 纳米技术 人工智能 冶金 化学 电极 医学 制作 物理化学 病理 替代医学 生物 植物
作者
Byeongju Lee,Mingu Kang,Kichul Lee,Yujeong Chae,Kuk-Jin Yoon,Dae-Sik Lee,Inkyu Park
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:10 (2): 954-964 被引量:7
标识
DOI:10.1021/acssensors.4c02715
摘要

Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity. Despite attempts to address this through new sensing materials and filters, achieving perfect selectivity remains challenging. This study addresses the selectivity issue by implementing temperature-modulated operation of a single SMO gas sensor utilizing an anodic aluminum oxide (AAO) microheater platform. The AAO-based sensor ensures a high thermal and mechanical stability during prolonged temperature modulation. A staircase waveform featuring six temperature conditions was applied to the microheater platform, and gas response data were collected for acetone, ammonia, ethanol, and nitrogen dioxide. Leveraging a convolutional neural network (CNN), gas patterns were trained and used to predict gas types and concentrations. The results demonstrated a high classification accuracy of 97.0%, with mean absolute percentage errors (MAPE) for concentration estimation of acetone, ammonia, ethanol, and nitrogen dioxide at 13.7, 19.2, 19.8, and 19.4%, respectively. The proposed method effectively classified four spices and accurately distinguished similar odors, which are difficult for human olfaction to differentiate. The results highlight that the combination of temperature modulation and deep learning algorithms proves to be highly effective in precisely determining gas types and concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
优秀的凉面完成签到,获得积分10
1秒前
研友_842M4n发布了新的文献求助10
1秒前
hym111发布了新的文献求助10
2秒前
sin发布了新的文献求助10
2秒前
2秒前
无限素完成签到,获得积分10
3秒前
4秒前
wanci应助刀锋采纳,获得10
5秒前
zhangjiawen1997完成签到,获得积分10
7秒前
ymX发布了新的文献求助10
8秒前
好的昂完成签到,获得积分10
9秒前
研友_842M4n完成签到,获得积分10
9秒前
9秒前
科研通AI6应助Yi采纳,获得10
10秒前
啷个吃不饱完成签到 ,获得积分10
10秒前
11秒前
Ziyi_Xu发布了新的文献求助30
13秒前
13秒前
13秒前
bake_bohe完成签到 ,获得积分10
13秒前
14秒前
15秒前
Pauline完成签到 ,获得积分10
15秒前
曦曦完成签到 ,获得积分10
16秒前
董啊完成签到,获得积分10
16秒前
17秒前
爆米花应助xiaoying采纳,获得10
18秒前
大团长完成签到,获得积分10
18秒前
微笑千柳发布了新的文献求助10
18秒前
英吉利25发布了新的文献求助10
18秒前
TeeteePor发布了新的文献求助30
20秒前
优雅山柏发布了新的文献求助10
20秒前
21秒前
alone完成签到,获得积分20
21秒前
21秒前
吗喽完成签到,获得积分10
21秒前
22秒前
ymX完成签到,获得积分10
23秒前
CQD5201314发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494803
求助须知:如何正确求助?哪些是违规求助? 4592550
关于积分的说明 14437708
捐赠科研通 4525424
什么是DOI,文献DOI怎么找? 2479421
邀请新用户注册赠送积分活动 1464210
关于科研通互助平台的介绍 1437185