Fast Self-Guided Multi-View Subspace Clustering

聚类分析 计算机科学 特征学习 判别式 人工智能 机器学习 共识聚类 概念聚类 一致性(知识库) 代表(政治) 构造(python库) 数据挖掘 相关聚类 树冠聚类算法 政治 政治学 法学 程序设计语言
作者
Zhe Chen,Xiao‐Jun Wu,Tianyang Xu,Josef Kittler
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6514-6525 被引量:38
标识
DOI:10.1109/tip.2023.3261746
摘要

Multi-view subspace clustering is an important topic in cluster analysis. Its aim is to utilize the complementary information conveyed by multiple views of objects to be clustered. Recently, view-shared anchor learning based multi-view clustering methods have been developed to speed up the learning of common data representation. Although widely applied to large-scale scenarios, most of the existing approaches are still faced with two limitations. First, they do not pay sufficient consideration on the negative impact caused by certain noisy views with unclear clustering structures. Second, many of them only focus on the multi-view consistency, yet are incapable of capturing the cross-view diversity. As a result, the learned complementary features may be inaccurate and adversely affect clustering performance. To solve these two challenging issues, we propose a Fast Self-guided Multi-view Subspace Clustering (FSMSC) algorithm which skillfully integrates the view-shared anchor learning and global-guided-local self-guidance learning into a unified model. Such an integration is inspired by the observation that the view with clean clustering structures will play a more crucial role in grouping the clusters when the features of all views are concatenated. Specifically, we first learn a locally-consistent data representation shared by all views in the local learning module, then we learn a globally-discriminative data representation from multi-view concatenated features in the global learning module. Afterwards, a feature selection matrix constrained by the l2,1 -norm is designed to construct a guidance from global learning to local learning. In this way, the multi-view consistent and diverse information can be simultaneously utilized and the negative impact caused by noisy views can be overcame to some extent. Extensive experiments on different datasets demonstrate the effectiveness of our proposed fast self-guided learning model, and its promising performance compared to both, the state-of-the-art non-deep and deep multi-view clustering algorithms. The code of this paper is available at https://github.com/chenzhe207/FSMSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Faceman发布了新的文献求助10
2秒前
3秒前
3秒前
zmj发布了新的文献求助10
3秒前
烟花应助Zhang采纳,获得10
3秒前
激昂的青完成签到,获得积分10
3秒前
瀚森完成签到 ,获得积分10
4秒前
sdl发布了新的文献求助10
4秒前
han完成签到,获得积分10
4秒前
如风随水发布了新的文献求助10
4秒前
Li发布了新的文献求助10
5秒前
WQ发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
munire发布了新的文献求助10
7秒前
打工人发布了新的文献求助10
8秒前
9秒前
10秒前
晴朗发布了新的文献求助10
11秒前
懒羊羊完成签到,获得积分10
11秒前
Faceman完成签到,获得积分10
11秒前
11秒前
田様应助李热热采纳,获得10
12秒前
重要墨镜发布了新的文献求助10
12秒前
万能图书馆应助SWEETYXY采纳,获得10
13秒前
传奇3应助SWEETYXY采纳,获得10
13秒前
852应助SWEETYXY采纳,获得10
13秒前
搜集达人应助SWEETYXY采纳,获得10
13秒前
FashionBoy应助SWEETYXY采纳,获得10
13秒前
完美世界应助SWEETYXY采纳,获得10
13秒前
万能图书馆应助SWEETYXY采纳,获得10
13秒前
Snail发布了新的文献求助20
13秒前
斯文败类应助SWEETYXY采纳,获得10
13秒前
Jasper应助SWEETYXY采纳,获得10
13秒前
英俊的铭应助SWEETYXY采纳,获得10
13秒前
彭于晏应助留白留白采纳,获得10
14秒前
桐桐应助拼搏的凤采纳,获得10
14秒前
打工人完成签到,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101762
求助须知:如何正确求助?哪些是违规求助? 3639371
关于积分的说明 11532921
捐赠科研通 3348024
什么是DOI,文献DOI怎么找? 1839978
邀请新用户注册赠送积分活动 907100
科研通“疑难数据库(出版商)”最低求助积分说明 824287