Lightweight Convolutional Transformers Enhanced Meta-Learning for Compound Fault Diagnosis of Industrial Robot

人工智能 计算机科学 机器学习 联营 深度学习 断层(地质) 可靠性工程 数据挖掘 工程类 地质学 地震学
作者
Chong Chen,Tao Wang,Chao Liu,Yuxin Liu,Lianglun Cheng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:13
标识
DOI:10.1109/tim.2023.3277956
摘要

Recent advance of deep learning has seen remarkable progress in compound fault diagnosis modelling for industrial robots. Nevertheless, the data scarcity of compound fault samples jeopardizes the modelling performance of deep learning algorithms. Meta learning has become an effective tool in few-shot fault diagnosis modelling. However, due to the training instability of meta learning, it is challenging to deploy advanced networks such as Transformers as the base learner due to the extremely large model size. Therefore, this study proposes a lightweight convolutional Transformers (LCT) network enhanced meta learning (Meta-LCT) method to achieve accurate compound fault diagnosis with limited compound fault samples. Specifically, the LCT is firstly designed by taking advantage of linear spatial reduction (LSR) attention and spatial pooling mechanism to achieve high computational efficiency. LCT is adopted as the base learner in the Meta-SGD algorithm, and then the meta-training is performed based on the single fault data. Subsequently, the limited compound fault samples are used in the meta testing stage to obtain a compound fault diagnosis model. An experimental study based on the real-world compound fault dataset of industrial robots is presented. The experimental results indicate that the proposed Meta-LCT can achieve the compound fault diagnosis accuracy of 81.1% when only 40 data samples in each compound fault category are available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leena发布了新的文献求助10
刚刚
武敏发布了新的文献求助10
刚刚
1秒前
深情安青应助honeybee采纳,获得10
2秒前
刘奕欣发布了新的文献求助10
2秒前
桐桐应助sam采纳,获得10
3秒前
CodeCraft应助侯晓宝采纳,获得10
3秒前
bingbingsha发布了新的文献求助10
3秒前
黑色幽默发布了新的文献求助10
3秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
仲达完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
失眠醉易应助科研通管家采纳,获得20
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得30
5秒前
cc应助科研通管家采纳,获得50
5秒前
荷兰香猪发布了新的文献求助10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得20
6秒前
ding应助科研通管家采纳,获得30
7秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
希望天下0贩的0应助锋锋采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818366
求助须知:如何正确求助?哪些是违规求助? 3361517
关于积分的说明 10413139
捐赠科研通 3079768
什么是DOI,文献DOI怎么找? 1692743
邀请新用户注册赠送积分活动 814539
科研通“疑难数据库(出版商)”最低求助积分说明 768193