A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive Learning

计算机科学 人工智能 代表(政治) 学习迁移 特征学习 自然语言处理 杠杆(统计) 人工神经网络 风格(视觉艺术) 机器学习 政治学 政治 历史 考古 法学
作者
Yuxin Zhang,Fan Tang,Weiming Dong,Haibin Huang,Chongyang Ma,Tong‐Yee Lee,Changsheng Xu
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:42 (5): 1-16 被引量:12
标识
DOI:10.1145/3605548
摘要

This work presents Unified Contrastive Arbitrary Style Transfer (UCAST), a novel style representation learning and transfer framework, that can fit in most existing arbitrary image style transfer models, such as CNN-based, ViT-based, and flow-based methods. As the key component in image style transfer tasks, a suitable style representation is essential to achieve satisfactory results. Existing approaches based on deep neural networks typically use second-order statistics to generate the output. However, these hand-crafted features computed from a single image cannot leverage style information sufficiently, which leads to artifacts such as local distortions and style inconsistency. To address these issues, we learn style representation directly from a large number of images based on contrastive learning by considering the relationships between specific styles and the holistic style distribution. Specifically, we present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature. Our framework consists of three key components: a parallel contrastive learning scheme for style representation and transfer, a domain enhancement (DE) module for effective learning of style distribution, and a generative network for style transfer. Qualitative and quantitative evaluations show the results of our approach are superior to those obtained via state-of-the-art methods. The code is available at https://github.com/zyxElsa/CAST_pytorch .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助隐形不言采纳,获得10
刚刚
二巨头完成签到,获得积分10
1秒前
1秒前
FengXY发布了新的文献求助10
1秒前
2秒前
群木成林完成签到,获得积分10
2秒前
3秒前
坦率纸飞机完成签到 ,获得积分10
4秒前
4秒前
忧郁嚣完成签到,获得积分20
4秒前
4秒前
科研通AI5应助liu采纳,获得10
4秒前
单薄的忆枫完成签到,获得积分10
5秒前
JamesPei应助wafo采纳,获得10
5秒前
An22发布了新的文献求助10
5秒前
hjyylab应助壮观的丑采纳,获得10
5秒前
星希发布了新的文献求助10
5秒前
jianrobsim发布了新的文献求助10
5秒前
zed完成签到,获得积分10
5秒前
6秒前
煎饼发布了新的文献求助10
6秒前
香蕉觅云应助秋刀鱼采纳,获得10
6秒前
6秒前
7秒前
arrow发布了新的文献求助20
7秒前
zed发布了新的文献求助10
8秒前
柔弱熊猫完成签到 ,获得积分10
9秒前
叶勉完成签到,获得积分10
9秒前
星希发布了新的文献求助10
10秒前
星希发布了新的文献求助10
10秒前
机智的乌发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
所所应助十八采纳,获得10
12秒前
13秒前
沉默芸完成签到 ,获得积分20
14秒前
14秒前
一一应助Drpei采纳,获得10
14秒前
Singularity应助小米采纳,获得10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838966
求助须知:如何正确求助?哪些是违规求助? 3381420
关于积分的说明 10518123
捐赠科研通 3100845
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821928
科研通“疑难数据库(出版商)”最低求助积分说明 773056