亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the Statistical Abilities of GPT-4 as a Zero-shot Reasoner: Strengths and Weaknesses

优势和劣势 计算机科学 模棱两可 统计模型 人工智能 自然语言处理 数据科学 集合(抽象数据类型) 机器学习 心理学 社会心理学 程序设计语言
作者
Douglas Costa,João Dias,Celso Nakano,Mário Luiz Ribeiro Monteiro
出处
期刊:Research Square - Research Square 被引量:2
标识
DOI:10.21203/rs.3.rs-2958780/v1
摘要

Abstract Background The field of artificial intelligence (AI) has witnessed remarkable advancements in natural language processing and understanding (NLP and NLU), particularly through the development of large language models like GPT-4. These models have demonstrated promise across various domains, including medicine. However, the extent to which they can reason statistically as zero-shot reasoners remains largely unexplored. Objective This study aims to evaluate GPT-4's statistical abilities as a zero-shot reasoner and identify its strengths and weaknesses in addressing statistical inquiries. Methods A diverse set of statistical questions was extracted from published articles and inputted into the GPT-4 chatbot. The responses generated by GPT-4 were assessed for accuracy and compared against the correct answers. Logistic regression analyses were performed to determine the impact of statistical topics and AI tasks on the model's performance. Results GPT-4 achieved an overall accuracy of 74% in responding to the statistical questions. The analysis revealed that the model excelled at comprehending well-structured and unambiguous questions, showcasing proficiency in entity recognition and information integration. However, it encountered difficulties with complex statistical concepts, data interpretation, and questions involving ambiguity or convoluted structures. Conclusion GPT-4 demonstrated strengths in understanding statistical concepts when presented clearly. However, it faced challenges with more intricate tasks and synthesizing information from multiple sources. Suggestions for improvement include fine-tuning the model using advanced statistical datasets, incorporating external knowledge sources, optimizing prompt engineering techniques, and enabling visual information processing. Implications: This study offers insights into the strengths and weaknesses of GPT-4 as a zero-shot reasoner in statistical tasks. Although the model exhibits potential in basic statistical reasoning, caution should be exercised in relying solely on its responses without human supervision for comprehensive statistical analysis and interpretation. Additionally, given that most researchers in the medical field may lack statistical expertise, leveraging language models can be valuable for addressing their statistical inquiries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助迷你的白筠采纳,获得30
刚刚
南寅完成签到,获得积分10
1秒前
科研通AI6应助yzizz采纳,获得10
2秒前
Linos应助颖123采纳,获得10
6秒前
Tim888完成签到,获得积分10
9秒前
10秒前
12秒前
13秒前
许吉旋发布了新的文献求助10
14秒前
gexzygg应助负责母鸡采纳,获得10
16秒前
ong发布了新的文献求助10
19秒前
19秒前
24秒前
许吉旋完成签到,获得积分10
25秒前
Jaho完成签到,获得积分10
30秒前
孙世界发布了新的文献求助10
30秒前
31秒前
科研通AI2S应助年轻的蘑菇采纳,获得10
31秒前
orixero应助勤恳的铃铛采纳,获得10
32秒前
冷静破茧发布了新的文献求助30
35秒前
shhoing应助科研通管家采纳,获得10
35秒前
35秒前
研友_VZG7GZ应助科研通管家采纳,获得10
35秒前
环走鱼尾纹完成签到 ,获得积分10
37秒前
Gryff完成签到 ,获得积分10
39秒前
42秒前
Honsarn完成签到,获得积分10
42秒前
52秒前
53秒前
Theresa发布了新的文献求助10
58秒前
李健应助Jenana采纳,获得80
1分钟前
浮游应助景安白采纳,获得30
1分钟前
1分钟前
Zeno完成签到 ,获得积分10
1分钟前
Jenana发布了新的文献求助80
1分钟前
1分钟前
whisper完成签到,获得积分10
1分钟前
1分钟前
否认冶游史完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629185
关于积分的说明 14610954
捐赠科研通 4570463
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364