Predicting the Mechanism of Tiannanxing-shengjiang Drug Pair in Treating Pain Using Network Pharmacology and Molecular Docking Technology

机制(生物学) 计算生物学 生物 对接(动物) 药理学 药品 化学 医学 认识论 哲学 护理部
作者
Boning Wang,Yanlei Wang,Peng Mao,Yi Zhang,Yifan Li,Xing Liu,Bifa Fan
出处
期刊:Current Computer - Aided Drug Design [Bentham Science Publishers]
卷期号:20 (5): 463-473
标识
DOI:10.2174/1573409919666230525122447
摘要

Objective: This study aimed to analyze the potential targets and mechanism of the Tiannanxing-shengjiang drug pair in pain treatment using network pharmacology and molecular docking technology. Methods: The active components and target proteins of Tiannanxing-Shengjiang were obtained from the TCMSP database. The pain-related genes were acquired from the DisGeNET database. The common target genes between Tiannanxing-Shengjiang and pain were identified and subjected to the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses on the DAVID website. AutoDockTools and molecular dynamics simulation analysis were used to assess the binding of the components with the target proteins. Results: Ten active components were screened out, such as stigmasterol, β-sitosterol, and dihydrocapsaicin. A total of 63 common targets between the drug and pain were identified. GO analysis showed the targets to be mainly associated with biological processes, such as inflammatory response and forward regulation of the EKR1 and EKR2 cascade. KEGG analysis revealed 53 enriched pathways, including pain-related calcium signaling, cholinergic synaptic signaling, and serotonergic pathway. Five compounds and 7 target proteins showed good binding affinities. These data suggest that Tiannanxing-shengjiang may alleviate pain through specific targets and signaling pathways. Conclusion: The active ingredients in Tiannanxing-shengjiang might alleviate pain by regulating genes, such as CNR1, ESR1, MAPK3, CYP3A4, JUN, and HDAC1 through the signaling pathways, including intracellular calcium ion conduction, cholinergic prominent signaling, and cancer signaling pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助DD立芬采纳,获得10
刚刚
英姑应助DD立芬采纳,获得10
刚刚
李爱国应助DD立芬采纳,获得10
1秒前
1秒前
dlzheng完成签到 ,获得积分10
1秒前
1秒前
年轻的吐司完成签到,获得积分10
1秒前
yuan完成签到,获得积分10
1秒前
黑糖完成签到,获得积分10
2秒前
3秒前
匡匡完成签到,获得积分10
3秒前
xsc完成签到,获得积分10
4秒前
SEAL完成签到 ,获得积分10
4秒前
hbhbj应助小样采纳,获得10
4秒前
song完成签到,获得积分10
4秒前
5秒前
Marybaby发布了新的文献求助10
5秒前
moonlight完成签到,获得积分10
5秒前
文文发布了新的文献求助10
6秒前
7秒前
8秒前
木非发布了新的文献求助10
8秒前
8秒前
8秒前
111完成签到,获得积分10
9秒前
郦涔完成签到,获得积分10
9秒前
12完成签到 ,获得积分10
9秒前
zsfxqq发布了新的文献求助10
10秒前
莫0817完成签到,获得积分10
11秒前
xzgwbh完成签到,获得积分10
12秒前
byyyy完成签到,获得积分10
13秒前
王珩安发布了新的文献求助10
13秒前
大模型应助王立志采纳,获得10
13秒前
谦让寻凝完成签到 ,获得积分10
13秒前
共享精神应助konglingjie采纳,获得10
13秒前
程程程完成签到,获得积分10
13秒前
JamesPei应助xqx采纳,获得10
14秒前
fiona完成签到,获得积分0
15秒前
曹梓轩完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294873
求助须知:如何正确求助?哪些是违规求助? 4444563
关于积分的说明 13833824
捐赠科研通 4328729
什么是DOI,文献DOI怎么找? 2376305
邀请新用户注册赠送积分活动 1371655
关于科研通互助平台的介绍 1336835