Discriminative feature constraints via supervised contrastive learning for few-shot forest tree species classification using airborne hyperspectral images

过度拟合 判别式 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 高光谱成像 监督学习 构造(python库) 聚类分析 卷积神经网络 样品(材料) 特征向量 机器学习 人工神经网络 语言学 哲学 化学 色谱法 程序设计语言
作者
Long Chen,Wu Jing,Yifan Xie,Erxue Chen,Xiaoli Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:295: 113710-113710 被引量:15
标识
DOI:10.1016/j.rse.2023.113710
摘要

In scenarios where sample collection is limited, studying few-shot learning algorithms such as prototypical networks (P-Net) is a keynote topic for supervised multiple tree species classification. In a previous study, we improved the P-Net by combining the feature enhancement algorithm based on the convolutional block attention module and several popular data augmentation methods in the computer vision domain, the classification accuracy can be significantly increased, and the degree of model overfitting can be reduced. However, there is a clear boundary between the data augmentations and the feature enhancement algorithm, which is manifested in that data augmentations are only used to enrich the diversity of the learned samples, but cannot directly affect the construction of the objective function, thus limiting the ability of data augmentations. In fact, in the supervised contrastive learning research, data augmentation methods are often used to generate positive samples of an anchor image to construct the objective function, i.e. supervised contrastive loss. The core idea for solving such a boundary problem is to use contrastive learning to make the anchor image close to its positive samples and the negative samples away from each other. Inspired by this, we introduced supervised contrastive learning in the P-Net, i.e., SCL-P-Net, which takes the discriminative feature representations as the constraints of the prototype clustering algorithm. In SCL-P-Net, data augmentation methods can not only extend the sample distribution, but also be used to construct the supervised contrastive loss directly. The study involves four airborne hyperspectral image datasets related to tree species classification, including the GFF-A and GFF-B datasets collected from Gaofeng Forest Farm in Nanning City, Guangxi Province, South China, the Xiongan dataset from Matiwan Village in Xiongan New Area, Hebei Province, North China, and the Tea Farm dataset from Fanglu Tea Farm in Changzhou City, Jiangsu Province, East China. The highest overall accuracy (OA) for the four datasets is 99.23% for GFF-A, 98.39% for GFF-B, 99.30% for Xiongan, and 99.54% for Tea Farm. It is concluded that the proposed SCL-P-Net classification framework can achieve multiple tree species classification with high-precision. Without changing the basic classification framework of P-Net, the introduction of supervised contrastive learning makes the combination of the data augmentations and the feature enhancement algorithm and plays a positive role in improving the distinguishability between samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
大方的火龙果完成签到 ,获得积分10
7秒前
ableyy完成签到,获得积分10
7秒前
落后的凝梦完成签到 ,获得积分10
9秒前
白桃乌龙完成签到,获得积分10
13秒前
Cope完成签到 ,获得积分10
14秒前
不安的朋友完成签到,获得积分10
17秒前
芝士大王完成签到 ,获得积分10
21秒前
23秒前
24秒前
勤恳的嚓茶完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
龙舞星完成签到,获得积分10
27秒前
胖一达完成签到 ,获得积分10
32秒前
liyanglin完成签到 ,获得积分10
37秒前
aertom完成签到,获得积分10
37秒前
Vegeta完成签到 ,获得积分10
40秒前
不想写文章完成签到 ,获得积分10
41秒前
一区种子选手完成签到,获得积分10
45秒前
222完成签到 ,获得积分10
45秒前
王涛完成签到 ,获得积分10
46秒前
小鱼医生完成签到 ,获得积分10
47秒前
三清小爷完成签到,获得积分10
48秒前
英俊的铭应助冷酷的丁丁采纳,获得10
48秒前
罗氏集团完成签到,获得积分10
48秒前
marc107完成签到,获得积分10
49秒前
今后应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
爆米花应助科研通管家采纳,获得10
51秒前
51秒前
安澜应助科研通管家采纳,获得10
51秒前
51秒前
缓慢雅青完成签到 ,获得积分10
52秒前
zhang完成签到 ,获得积分10
53秒前
诸青梦完成签到 ,获得积分10
53秒前
kchen85完成签到,获得积分0
55秒前
量子星尘发布了新的文献求助10
56秒前
欢呼白晴完成签到 ,获得积分10
56秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875457
求助须知:如何正确求助?哪些是违规求助? 3417837
关于积分的说明 10704702
捐赠科研通 3142286
什么是DOI,文献DOI怎么找? 1733914
邀请新用户注册赠送积分活动 836210
科研通“疑难数据库(出版商)”最低求助积分说明 782583