Conditional Variational Encoder Classifier for Open Set Fault Classification of Rotating Machinery Vibration Signals

分类器(UML) 计算机科学 人工智能 正规化(语言学) 模式识别(心理学) 振动 编码器 自编码 故障检测与隔离 机器学习 线性分类器 数据挖掘 深度学习 物理 执行机构 操作系统 量子力学
作者
Jie Mei,Ming Zhu,Wei Liu,Fu Ming,Qing Tang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3038-3049 被引量:12
标识
DOI:10.1109/tii.2023.3301058
摘要

Deep-learning-based fault diagnosis models perform well when the training and test sets have the same label set. However, these models are invalid in practical applications because they misclassify any unknown faults into existing known classes. An effective diagnosis model for practical industrial applications requires the ability to detect unknown faults as well as maintain high classification accuracy on known faults. To address this challenge, this article proposes a generic open-set classification method for vibration signals. We propose a variational encoder-classifier structure to extract the robust latent features that have different specific distributions with respect to their classes. According to the distances between the latent feature distributions, the samples from unknown faults are rejected using extreme value theory (EVT) and empirical threshold. In addition, we devised an EVT-based instance-level regularization weight function to allow the model to enhance the regularization on the samples that around the known and unknown decision boundaries, which can reduce the risk of bias in the empirical threshold setting caused by the hard training samples. Experimental results on five public rotating machinery vibration datasets reveal that the proposed method achieves the best performance for each dataset. This demonstrates the effectiveness and superiority of the proposed method for practical application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
斌糖排骨完成签到,获得积分10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
开放蓝天应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
刚刚
钰钰yuyu完成签到,获得积分10
刚刚
刚刚
娜娜完成签到 ,获得积分10
刚刚
1秒前
镜雀发布了新的文献求助30
1秒前
kkscanl完成签到 ,获得积分10
1秒前
whisper完成签到,获得积分10
1秒前
鸣隐完成签到,获得积分10
2秒前
2秒前
3秒前
123完成签到,获得积分10
3秒前
PigaChu发布了新的文献求助10
4秒前
wanci应助害羞问安采纳,获得10
4秒前
5秒前
5秒前
FashionBoy应助小吉采纳,获得10
5秒前
Liu完成签到 ,获得积分10
5秒前
6秒前
充电宝应助金色晨光采纳,获得10
6秒前
6秒前
6秒前
6秒前
屈屈完成签到,获得积分10
8秒前
镜雀完成签到,获得积分10
10秒前
月星发布了新的文献求助10
10秒前
龙虾发票完成签到,获得积分10
11秒前
唐糖唐完成签到,获得积分10
11秒前
issac完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5596660
求助须知:如何正确求助?哪些是违规求助? 4682044
关于积分的说明 14824049
捐赠科研通 4658191
什么是DOI,文献DOI怎么找? 2536154
邀请新用户注册赠送积分活动 1503893
关于科研通互助平台的介绍 1469998