清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data‐driven insights for circular and sustainable food supply chains: An empirical exploration of big data and predictive analytics in enhancing social sustainability performance

持续性 供应链 利益相关方参与 大数据 业务 验证性因素分析 循环经济 分析 利益相关者 营销 供应链管理 社会可持续性 企业社会责任 实证研究 经验证据 产业组织 经济 公共关系 数据科学 计算机科学 生态学 哲学 管理 认识论 政治学 生物 服务(商务) 操作系统
作者
Surajit Bag,Gautam Srivastava,Anass Cherrafi,Ahad Ali,Rajesh Kumar Singh
出处
期刊:Business Strategy and The Environment [Wiley]
卷期号:33 (2): 1369-1396 被引量:42
标识
DOI:10.1002/bse.3554
摘要

Abstract Although the circular economy is commonly used among industries in developing countries to achieve carbon neutrality targets, its impact on social sustainability must be clarified. Stakeholders (for instance, community stakeholders) have been observed to be unaware of the focal firm's circular supply chain activities. Because this gap has not been generally reflected in the literature, it is critical to perform an empirical study to bridge the gap between theory and practice. The goal of this research was to determine whether new technologies such as big data and predictive analytics might influence an organization's propensity to share information related to circular economy practices with stakeholders as well as to increase connectivity with those stakeholders in the Industry 4.0 era. We also investigated whether these actions could increase stakeholder trust and engagement and social sustainability as a result. We tested our theoretical model using samples from food supply chain firms in South Africa. Confirmatory factor analysis was conducted using WarpPLS 7.0 software. The findings show that firms that deploy big data and predictive analytics are more likely to share information related to the circular economy with stakeholders and that these firms are also well‐connected with those stakeholders, resulting in increased trust and engagement. This, in turn, contributes to the social sustainability of supply chains. Our research has made a significant contribution by encouraging a theoretical debate regarding the willingness to share information regarding the circular economy and the social sustainability of the supply chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
充电宝应助me采纳,获得10
11秒前
15秒前
15秒前
无情的琳发布了新的文献求助10
16秒前
17秒前
加贝完成签到 ,获得积分10
18秒前
me完成签到,获得积分10
24秒前
27秒前
keyanxiaobaishu完成签到 ,获得积分10
30秒前
31秒前
Connie完成签到,获得积分10
33秒前
apt完成签到 ,获得积分10
34秒前
漂亮的秋天完成签到 ,获得积分10
37秒前
顾矜应助科研通管家采纳,获得10
39秒前
53秒前
1分钟前
1分钟前
huiluowork完成签到 ,获得积分10
1分钟前
冷傲涑完成签到 ,获得积分20
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
无情的琳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
rockyshi完成签到 ,获得积分10
1分钟前
李健的小迷弟应助哈哈哈采纳,获得10
1分钟前
1分钟前
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
1分钟前
天天快乐应助cy采纳,获得10
1分钟前
研友_LN25rL完成签到,获得积分10
2分钟前
2分钟前
热塑性哈士奇完成签到,获得积分10
2分钟前
勤劳的渊思完成签到 ,获得积分10
2分钟前
冷酷代玉完成签到 ,获得积分10
2分钟前
2分钟前
Singularity应助科研通管家采纳,获得10
2分钟前
三个气的大门完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724418
求助须知:如何正确求助?哪些是违规求助? 5287939
关于积分的说明 15299895
捐赠科研通 4872324
什么是DOI,文献DOI怎么找? 2616859
邀请新用户注册赠送积分活动 1566703
关于科研通互助平台的介绍 1523668