S-OmniMVS: Incorporating Sphere Geometry into Omnidirectional Stereo Matching

全向天线 计算机科学 失真(音乐) 职位(财务) 计算机视觉 人工智能 球坐标系 几何学 数学 财务 天线(收音机) 计算机网络 电信 经济 放大器 带宽(计算)
作者
Zisong Chen,Chunyu Lin,Lang Nie,Zhijie Shen,Kang Liao,Yuanzhouhan Cao,Yao Zhao
标识
DOI:10.1145/3581783.3612381
摘要

Multi-fisheye stereo matching is a promising task that employs the traditional multi-view stereo (MVS) pipeline with spherical sweeping to acquire omnidirectional depth. However, the existing omnidirectional MVS technologies neglect fisheye and omnidirectional distortions, yielding inferior performance. In this paper, we revisit omnidirectional MVS by incorporating three sphere geometry priors: spherical projection, spherical continuity, and spherical position. To deal with fisheye distortion, we propose a new distortion-adaptive fusion module to convert fisheye inputs into distortion-free spherical tangent representations by constructing a spherical projection space. Then these multi-scale features are adaptively aggregated with additional learnable offsets to enhance content perception. To handle omnidirectional distortion, we present a new spherical cost aggregation module with a comprehensive consideration of the spherical continuity and position. Concretely, we first design a rotation continuity compensation mechanism to ensure omnidirectional depth consistency of left-right boundaries without introducing extra computation. On the other hand, we encode the geometry-aware spherical position and push them into the cost aggregation to relieve panoramic distortion and perceive the 3D structure. Furthermore, to avoid the excessive concentration of depth hypothesis caused by inverse depth linear sampling, we develop a segmented sampling strategy that combines linear and exponential spaces to create S-OmniMVS, along with three sphere priors. Extensive experiments demonstrate the proposed method outperforms the state-of-the-art (SoTA) solutions by a large margin on various datasets both quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美醉波发布了新的文献求助10
刚刚
单雨旋完成签到,获得积分10
4秒前
6秒前
7秒前
蜡笔小z完成签到 ,获得积分10
8秒前
8秒前
CodeCraft应助机灵的十八采纳,获得10
10秒前
烟花应助hu采纳,获得10
10秒前
11秒前
fx完成签到,获得积分10
11秒前
宗水绿发布了新的文献求助10
11秒前
专一的从波完成签到 ,获得积分10
12秒前
12秒前
创不可贴发布了新的文献求助10
12秒前
kh完成签到,获得积分10
14秒前
ChenHN完成签到,获得积分10
15秒前
杜大帅发布了新的文献求助10
16秒前
16秒前
雪球完成签到,获得积分10
16秒前
AopingZhu发布了新的文献求助10
17秒前
lifeup发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
21秒前
23秒前
宗水绿完成签到,获得积分20
24秒前
hu发布了新的文献求助10
24秒前
26秒前
杜大帅完成签到,获得积分10
27秒前
29秒前
Zxc发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
38秒前
38秒前
40秒前
田様应助卜婉君采纳,获得10
43秒前
SCI发布了新的文献求助10
45秒前
45秒前
silence发布了新的文献求助30
46秒前
创不可贴完成签到,获得积分10
48秒前
键盘车神完成签到 ,获得积分10
48秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867092
求助须知:如何正确求助?哪些是违规求助? 3409309
关于积分的说明 10663075
捐赠科研通 3133476
什么是DOI,文献DOI怎么找? 1728248
邀请新用户注册赠送积分活动 832842
科研通“疑难数据库(出版商)”最低求助积分说明 780488