亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of machine learning techniques for obesity prediction: a comparative study

随机森林 机器学习 支持向量机 人工智能 逻辑回归 决策树 朴素贝叶斯分类器 超参数 计算机科学 统计 数据挖掘 数学 医学
作者
Mahmut Di̇ri̇k
出处
期刊:Journal of complexity in health sciences [JVE International Ltd.]
卷期号:6 (2): 16-34 被引量:20
标识
DOI:10.21595/chs.2023.23193
摘要

Obesity, characterized by excess adipose tissue, is becoming a major public health problem. This condition, caused primarily by unbalanced energy intake (overconsumption) and exacerbated by modern lifestyles such as physical inactivity and suboptimal dietary habits, is the harbinger of a variety of health disorders such as diabetes, cardiovascular disease, and certain cancers. Therefore, there is an urgent need to accurately diagnose and assess the extent of obesity in order to formulate and apply appropriate preventive measures and therapeutic interventions. However, the heterogeneous results of existing diagnostic techniques have triggered a fierce debate on the optimal approach to identifying and assessing obesity, thus complicating the search for a standard diagnostic and treatment method. This research primarily aims to use machine learning techniques to build a robust predictive model for identifying overweight or obese individuals. The proposed model, derived from a person's physical characteristics and dietary habits, was evaluated using a number of machine learning algorithms, including Multilayer Perceptron (MLP), Support Vector Machine (SVM), Fuzzy K-Nearest Neighbors (FuzzyNN), Fuzzy Unordered Rule Induction Algorithm (FURIA), Rough Sets (RS), Random Tree (RT), Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR), and Decision Table (DT). Subsequently, the developed models were evaluated using a number of evaluation measures such as correlation coefficient, accuracy, kappa statistic, mean absolute error, and mean square error. The hyperparameters of the model were properly calibrated to improve accuracy. The study revealed that the random forest model (RF) had the highest accuracy of 95.78 %, closely followed by the logistic regression model (LR) with 95.22 %. Other algorithms also produced satisfactory accuracy results but could not compete with the RF and LR models. This study suggests that the pragmatic application of the model could help physicians identify overweight or obese individuals and thus accelerate the early detection, prevention, and treatment of obesity-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
楠楠2001完成签到 ,获得积分10
2秒前
3秒前
Lucas应助小小鹿采纳,获得10
11秒前
19秒前
郝誉发布了新的文献求助10
24秒前
26秒前
30秒前
小小鹿发布了新的文献求助10
32秒前
41秒前
okko完成签到,获得积分10
50秒前
Hello应助sdndkjfvb采纳,获得10
53秒前
啦啦啦完成签到,获得积分10
58秒前
ramsey33完成签到 ,获得积分10
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
1分钟前
Crisp完成签到 ,获得积分10
1分钟前
科研通AI6应助caoju采纳,获得10
1分钟前
1分钟前
阿文完成签到 ,获得积分10
1分钟前
hyyyh完成签到,获得积分10
1分钟前
郝誉发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
1分钟前
sdndkjfvb发布了新的文献求助10
1分钟前
fxs完成签到,获得积分20
1分钟前
王文艺完成签到,获得积分10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
小小鹿完成签到,获得积分10
1分钟前
浮生六记完成签到 ,获得积分10
1分钟前
duan123456完成签到,获得积分10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598515
关于积分的说明 14464275
捐赠科研通 4532106
什么是DOI,文献DOI怎么找? 2483837
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439695