Deep Learning for Precipitation Retrievals Using ABI and GLM Measurements on the GOES-R Series

计算机科学 地球静止轨道 遥感 深度学习 卫星 地球静止运行环境卫星 降水 全球降水量测量 环境科学 亮度温度 雷达 人工智能 气象学 微波食品加热 电信 地质学 物理 工程类 航空航天工程
作者
Yifan Yang,Haonan Chen,Kyle A. Hilburn,Robert J. Kuligowski,Robert Cifelli
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:6
标识
DOI:10.1109/tgrs.2023.3322352
摘要

Satellite sensors have been widely used for precipitation retrieval, and a number of precipitation retrieval algorithms have been developed using observations from various satellite sensors. The current operational rainfall rate quantitative precipitation estimate (RRQPE) product from the geostationary operational environmental satellite (GOES) offers full disk rainfall rate estimates based on the observations from the advanced baseline imager (ABI) aboard the GOES-R series. However, accurate precipitation retrieval using satellite sensors is still challenging due to the limitations on spatiotemporal sampling of the satellite sensors and/or the uncertainty associated with the applied parametric retrieval algorithms. In this article, we propose a deep learning framework for precipitation retrieval using the combined observations from the ABI and geostationary lightning mapper (GLM) on the GOES-R series to improve the current operational RRQPE product. In particular, the proposed deep learning framework is composed of two deep convolutional neural networks (CNNs) that are designed for precipitation detection and quantification. The cloud-top brightness temperature (BT) from multiple ABI channels and the lightning flash rate from the GLM measurement are used as inputs to the deep learning framework. To train the designed CNNs, the precipitation product multiradar multisensor (MRMS) system from the National Oceanic and Atmospheric Administration (NOAA) is used as target labels to optimize the network parameters. The experimental results show that the precipitation retrieval performance of the proposed framework is superior to the currently operational GOES RRQPE product in the selected study domain, and the performance is dramatically enhanced after incorporating the lightning data into the deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助细腻含羞草采纳,获得10
刚刚
邱乐乐发布了新的文献求助10
刚刚
科研通AI6应助zyx采纳,获得10
刚刚
1秒前
1秒前
JUN完成签到 ,获得积分10
1秒前
朴素梦蕊完成签到 ,获得积分10
2秒前
林婧发布了新的文献求助10
2秒前
2秒前
goodltl完成签到 ,获得积分10
2秒前
约礼完成签到,获得积分10
2秒前
GD发布了新的文献求助10
2秒前
Steph完成签到,获得积分20
3秒前
丁双飞发布了新的文献求助30
3秒前
ztt发布了新的文献求助10
3秒前
黑猫乾杯应助X_X采纳,获得10
3秒前
zxx发布了新的文献求助10
4秒前
ran完成签到,获得积分10
4秒前
xgs完成签到,获得积分10
4秒前
呱呱完成签到 ,获得积分10
4秒前
ssss完成签到,获得积分10
4秒前
英俊的铭应助慈祥的翠梅采纳,获得10
5秒前
meimei完成签到,获得积分20
5秒前
5秒前
6秒前
盛夏完成签到,获得积分10
6秒前
CC完成签到,获得积分10
6秒前
6秒前
着慵懒时光的猫完成签到,获得积分10
6秒前
7秒前
lan关闭了lan文献求助
7秒前
7秒前
xgs发布了新的文献求助30
8秒前
Zxx完成签到,获得积分10
8秒前
xupt唐僧发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494