A non-grain production on cropland spatiotemporal change detection method based on Landsat time-series data

粮食安全 地理 遥感 城市化 环境资源管理 农业 环境科学 生态学 考古 生物
作者
Wu Xiao,Tingting He,Suqin Jiang,Maoxin Zhang,Tie Tang,Heyu Zhang
出处
期刊:Authorea - Authorea
标识
DOI:10.22541/au.170065861.12057495/v1
摘要

Global food security is being threatened by the reduction of high-quality cropland, extreme weather events, and the uncertainty of food supply chains. The globalization of agricultural trade has elevated the diversification of non-grain production (NGP) on cultivated land to a prominent strategy for poverty alleviation in numerous developing nations. Its rapid expansion has engendered a multitude of deleterious consequences on both food security and ecological stability. NGP in China is becoming very common in the process of rapid urbanization, threatening the national food security. To better understand the causal mechanisms and enable governments to balance food security and rural development, it is crucial to have a clear understanding of the spatiotemporal dynamics of NGP using remote sensing. Yet knowledge gaps remain concerning how to use remote sensing to track human-dominated or -induced long-term cultivated land changes. Our study proposed a method for detecting the spatiotemporal evolution of NGP based on Landsat time series data under Google Earth Engine (GEE) platform. This approach was proposed by (1) obtaining the union of cultivated lands from multiple landcover products to minimize the cultivated land omission, (2) constructing multi-index dynamic trend rules for 3 representative types of NGP and obtaining results at the pixel level, while adopting the continuous change detection and classification (CCDC) algorithm to Landsat time series (1986~2022) to determine when the most recent change occurred, (3) minimizing the noise by object-oriented (OO) Land Use–Land Cover (LULC) classification and mode filter approaches, (4) mapping the spatiotemporal distribution of NGP. The proposed methodology was tested in Jiashan, located in Zhejiang province (eastern China), where NGP is widespread. We achieved high overall accuracy of 95.67% for NGP type detection and an overall accuracy of 85.26% for change detection of time. The results indicated a continued increasing pattern of NGP in Jiashan from 1986-2022, with the cumulative percentage of NGP increased from 0.02% to 20.69%. This study highlights the utilization of time-series data to document essential NGP information for evaluating food security in China and the method is well-suited for large-scale mapping due to its automatic manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏明明完成签到,获得积分10
刚刚
无花果应助英俊延恶采纳,获得10
3秒前
5秒前
烙饼完成签到,获得积分10
6秒前
双青豆完成签到 ,获得积分10
7秒前
英勇凝旋完成签到,获得积分10
10秒前
小杨完成签到 ,获得积分10
12秒前
even完成签到 ,获得积分10
13秒前
宇宇宇c完成签到,获得积分10
15秒前
fufufu123完成签到 ,获得积分10
16秒前
星辰大海应助可乐味橘子采纳,获得10
18秒前
偷得浮生半日闲完成签到 ,获得积分10
20秒前
wanci应助daladidala采纳,获得10
21秒前
cwq完成签到 ,获得积分10
22秒前
淡然的芷荷完成签到 ,获得积分10
22秒前
小高同学完成签到,获得积分10
25秒前
xiaofan应助Bismarck采纳,获得10
25秒前
guangyu完成签到,获得积分10
28秒前
28秒前
haonanchen完成签到,获得积分10
33秒前
漏脑之鱼完成签到 ,获得积分10
33秒前
daladidala发布了新的文献求助10
33秒前
张立佳完成签到 ,获得积分10
34秒前
xyzlancet完成签到,获得积分10
34秒前
40秒前
heavenhorse完成签到,获得积分0
40秒前
Nick应助雪山飞龙采纳,获得30
40秒前
Ting完成签到 ,获得积分10
44秒前
RYAN完成签到 ,获得积分10
45秒前
乐人完成签到 ,获得积分10
46秒前
柠檬完成签到 ,获得积分10
47秒前
迟迟完成签到 ,获得积分10
49秒前
万事屋完成签到 ,获得积分10
51秒前
Present完成签到,获得积分10
59秒前
pp完成签到 ,获得积分0
1分钟前
1分钟前
科yt完成签到,获得积分10
1分钟前
合适的寄灵完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843292
求助须知:如何正确求助?哪些是违规求助? 3385599
关于积分的说明 10540781
捐赠科研通 3106177
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823825
科研通“疑难数据库(出版商)”最低求助积分说明 774308