A deep learning system for detection of early Barrett's neoplasia: a model development and validation study

巴雷特食道 医学 标杆管理 考试(生物学) 发育不良 人工智能 内科学 放射科 胃肠病学 癌症 腺癌 计算机科学 生物 业务 古生物学 营销
作者
Kiki Fockens,M. R. Jong,J-Wouter Jukema,Tim Boers,Carolus H. J. Kusters,Joost van der Putten,Roos E. Pouw,Lucas C. Duits,Nahid S.M. Montazeri,Sanne N. van Munster,Bas L. Weusten,Lorenza Alvarez Herrero,MHMG Houben,WB Nagengast,Jessie Westerhof,A. Alkhalaf,Rosalie C. Mallant–Hent,Pieter Scholten,Krish Ragunath,Stefan Seewald
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (12): e905-e916 被引量:25
标识
DOI:10.1016/s2589-7500(23)00199-1
摘要

BackgroundComputer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus.MethodsThe CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs).FindingsSensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73–2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90–2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96–1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79–1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88–98) of images and 97% (90–99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93–8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85–47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83–3·65] for images and 91% vs 86% [2·94; 0·99–11·40] for video).InterpretationCADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases.FundingOlympus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氧硫硒锑铋完成签到,获得积分10
刚刚
wzq关闭了wzq文献求助
1秒前
科研通AI5应助马仕达采纳,获得10
1秒前
1秒前
此晴可待完成签到,获得积分10
1秒前
学XI完成签到,获得积分20
2秒前
阿强完成签到,获得积分10
2秒前
比尔格发布了新的文献求助10
2秒前
2秒前
端庄涔雨完成签到,获得积分10
2秒前
一颗橙子发布了新的文献求助10
2秒前
3秒前
4秒前
chai发布了新的文献求助10
4秒前
文献互助完成签到,获得积分10
4秒前
cnulee完成签到,获得积分10
5秒前
5秒前
6秒前
lzz发布了新的文献求助10
6秒前
Dale发布了新的文献求助10
6秒前
Stove完成签到,获得积分10
6秒前
7秒前
幽默钢笔发布了新的文献求助10
7秒前
Singularity应助彩色初柔采纳,获得10
7秒前
霍山柳发布了新的文献求助10
8秒前
pure123完成签到,获得积分10
8秒前
星星完成签到,获得积分10
9秒前
9秒前
Jocd完成签到,获得积分10
10秒前
10秒前
方超完成签到,获得积分10
10秒前
华哥发布了新的文献求助10
10秒前
11秒前
Jasper应助轩扬采纳,获得10
11秒前
11秒前
11秒前
leomei完成签到,获得积分10
11秒前
huxinshinn应助jinyu采纳,获得10
11秒前
天天快乐应助yg采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Introduction to Water Resources and Environmental Issues 200
Absent Here 200
Methods of optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346984
求助须知:如何正确求助?哪些是违规求助? 3853233
关于积分的说明 12027102
捐赠科研通 3494873
什么是DOI,文献DOI怎么找? 1917494
邀请新用户注册赠送积分活动 960463
科研通“疑难数据库(出版商)”最低求助积分说明 860337