Hybrid Artificial Neural Network-Based Models to Investigate Deformation Behavior of AZ31B Magnesium Alloy at Warm Tensile Deformation

材料科学 变形(气象学) 极限抗拉强度 人工神经网络 镁合金 合金 复合材料 冶金 人工智能 计算机科学
作者
Mohanraj Murugesan,Jae-Hyeong Yu,Wan‐Jin Chung,Chang-Whan Lee
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:16 (15): 5308-5308 被引量:8
标识
DOI:10.3390/ma16155308
摘要

The uniaxial warm tensile experiments were carried out in deformation temperatures (50-250 °C) and strain rates (0.005 to 0.0167 s-1) to investigate the material workability and to predict flow stress of AZ31B magnesium alloy. The back-propagation artificial neural network (BP-ANN) model, a hybrid models with a genetic algorithm (GABP-ANN), and a constrained nonlinear function (CFBP-ANN) were investigated. In order to train the exploited machine learning models, the process parameters such as strain, strain rate, and temperature were accounted as inputs and flow stress was considered as output; moreover, the experimental flow stress values were also normalized to constructively run the neural networks and to achieve better generalization and stabilization in the trained network. Additionally, the proposed model's closeness and validness were quantified by coefficient of determination (R2), relative mean square error (RMSE), and average absolute relative error (AARE) metrics. The computed statistical outcomes disclose that the flow stress predicted by both GABP-ANN and CFBP-ANN models exhibited better closeness with the experimental data. Moreover, compared with the GABP-ANN model outcomes, the CFBP-ANN model has a relatively higher predictability. Thus, the outcomes confirm that the proposed CFBP-ANN model can result in the accurate description of AZ31 magnesium alloy deformation behavior, showing potential for the purpose of practicing finite element analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Forest完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
3秒前
含蓄冬瓜发布了新的文献求助10
3秒前
金妍昕发布了新的文献求助10
3秒前
大模型应助亭瞳采纳,获得10
4秒前
4秒前
cosimo发布了新的文献求助10
4秒前
KL发布了新的文献求助10
5秒前
6秒前
理想发布了新的文献求助10
6秒前
8秒前
898发布了新的文献求助10
8秒前
玲子君发布了新的文献求助10
9秒前
LL完成签到,获得积分20
9秒前
yuchen12a发布了新的文献求助10
9秒前
cosimo完成签到,获得积分10
9秒前
10秒前
Dr_zs发布了新的文献求助10
11秒前
田様应助微笑的可乐采纳,获得10
12秒前
M123456发布了新的文献求助10
12秒前
理想完成签到,获得积分20
13秒前
rjhgh完成签到,获得积分10
14秒前
小蘑菇应助含蓄冬瓜采纳,获得10
15秒前
亭瞳发布了新的文献求助10
16秒前
17秒前
1351567822应助丫丫采纳,获得10
18秒前
20秒前
20秒前
微笑的可乐完成签到,获得积分10
22秒前
23秒前
Zzz发布了新的文献求助10
25秒前
26秒前
傅ruoyu发布了新的文献求助10
27秒前
30秒前
小橙子应助as采纳,获得50
30秒前
31秒前
王昭完成签到 ,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4041423
求助须知:如何正确求助?哪些是违规求助? 3578819
关于积分的说明 11380899
捐赠科研通 3307725
什么是DOI,文献DOI怎么找? 1820078
邀请新用户注册赠送积分活动 893216
科研通“疑难数据库(出版商)”最低求助积分说明 815408