重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Are both generative AI and ChatGPT game changers for 21st-Century operations and supply chain excellence?

供应链 早期采用者 卓越运营 供应链管理 卓越 业务 知识管理 生成语法 营销 计算机科学 人工智能 政治学 法学
作者
Samuel Fosso Wamba,Maciel M. Queiroz,Charbel José Chiappetta Jabbour,Chunming Shi
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:265: 109015-109015 被引量:228
标识
DOI:10.1016/j.ijpe.2023.109015
摘要

The remarkable growth of ChatGPT, a Generative Artificial Intelligence (Gen-AI), has triggered a significant debate in society. It has the potential to radically transform the business landscape, with consequences for operations and supply chain management (O&SCM). However, empirical evidence on Gen-AI's effects in O&SCM remains limited. This study investigates the benefits, challenges, and trends associated with Gen-AI/ChatGPT in O&SCM. We collected data from O&SCM practitioners in the UK (N = 154) and the USA (N = 161). As we used the organizational learning theory for the research, our findings reveal increased efficiency as a significant benefit for both adopters and non-adopters in both countries, while indicating security, risks, and ethical as prominent concerns. In particular, it appeared that the integration of Gen-AI/ChatGPT leads to the enhancement of the overall supply chain performance. Moreover, organizational learning can speed up the results of Gen-AI/ChatGPT in O&SCM. No wonders that adopters express their satisfaction about the post-implementation benefits of the technology, which include reduced perceived challenges for pre-implementation, and greater optimism about future Gen-AI/ChatGPT utilization compared to non-adopters. Adopters also display diverse behavioral patterns toward efficiency, agility, responsiveness, etc. This study provides valuable insights for scholars, practitioners, and policymakers interested in comprehending Gen-AI/ChatGPT's implications in O&SCM for both adopters and non-adopters. Additionally, it underscores the importance of organizational learning processes in facilitating successful Gen-AI/ChatGPT adoption in O&SCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111111完成签到,获得积分10
1秒前
坦率的匪发布了新的文献求助10
1秒前
心照完成签到,获得积分20
2秒前
大会哥完成签到,获得积分10
2秒前
yydssss完成签到,获得积分10
2秒前
czs发布了新的文献求助10
2秒前
迷人羊完成签到,获得积分10
2秒前
无私香彤完成签到 ,获得积分10
2秒前
阳光元正发布了新的文献求助30
2秒前
星辰大海应助Jennifer采纳,获得10
2秒前
FRANKIE完成签到 ,获得积分20
3秒前
妩媚的新波完成签到,获得积分10
3秒前
Sarah完成签到,获得积分10
3秒前
领导范儿应助ZQL采纳,获得10
3秒前
今后应助无情的鸣凤采纳,获得10
3秒前
苹果枣豆完成签到,获得积分10
3秒前
Lsm13141516发布了新的文献求助10
4秒前
雯yuki发布了新的文献求助10
4秒前
duoduoqian发布了新的文献求助10
5秒前
林林宁宁完成签到 ,获得积分10
5秒前
5秒前
huangxiaomei111完成签到,获得积分10
5秒前
5秒前
搞怪南烟发布了新的文献求助30
6秒前
bkagyin应助Mar采纳,获得10
6秒前
1122完成签到,获得积分10
6秒前
FRANKIE关注了科研通微信公众号
6秒前
CodeCraft应助拉长的傲旋采纳,获得50
6秒前
7秒前
7秒前
7秒前
momo完成签到,获得积分10
7秒前
罗大人发布了新的文献求助10
8秒前
8秒前
bkagyin应助风清扬采纳,获得10
8秒前
失眠的数据线应助风清扬采纳,获得10
8秒前
爆米花应助风清扬采纳,获得10
8秒前
8秒前
脑洞疼应助风清扬采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654