Data-Driven Model Development for Prediction and Optimization of Biomass Yield of Microalgae-Based Wastewater Treatment

生物量(生态学) 产量(工程) 废水 环境科学 污水处理 生化工程 制浆造纸工业 环境工程 生态学 工程类 生物 材料科学 冶金
作者
Karthikeyan Meenatchisundaram,Sarath C. Gowd,Jintae Lee,Selvaraj Barathi,Karthik Rajendran
标识
DOI:10.2139/ssrn.4631791
摘要

Microalgae-based nutrient recovery has the potential to efficiently recover nutrients while simultaneously treating wastewater. However, the absence of an optimization model for this technology hinders its full potential. This study has developed a model to optimize the biomass yield in micro algae-based wastewater treatment system. Seven machine learning models, including Decision Trees (DT), Random Forest (RF), K-Nearest Neighbours (KNN), Gradient Boosting Regressor (GBR), Multi-Layer Perceptron Regression (MLPR), Support Vector Regression (SVR), and Artificial Neural Networks (ANN), were compared. Among other algorithms, ANN performed superiorly, achieving an R2 value of 0.98 with the lowest error. Furthermore, the optimal biomass yield of 948 mg/L (31.7% higher) was obtained when the COD, phosphate, nitrate, nitrite, pH, and retention times were maintained at 350 mg/L, 50 mg/L, 60 mg/L, 140 mg/L, 7.1, 9 days respectively. The pH and Retention time were found to be critical factors for the prediction of biomass yield. 20% of variation in the train test split ratio caused a 21% increase in the error value and the 75:25 ratio was found to be optimal for better performance of the model. This study serves as a valuable reference point for efficient AI - integrated algae-based wastewater treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
zyh发布了新的文献求助10
2秒前
橘子味的风完成签到,获得积分10
3秒前
小白应助深情芷采纳,获得20
3秒前
4秒前
多多发布了新的文献求助10
5秒前
MindAway完成签到,获得积分10
5秒前
科研通AI5应助forangel采纳,获得10
5秒前
77发布了新的文献求助10
6秒前
天真怜晴完成签到,获得积分10
6秒前
xuanqing发布了新的文献求助10
6秒前
打打应助rui采纳,获得10
6秒前
菜狗发布了新的文献求助10
7秒前
00111100发布了新的文献求助10
8秒前
时间煮雨我煮鱼完成签到,获得积分10
10秒前
11秒前
科目三应助是琳不是林采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
桐桐应助HarryChan采纳,获得10
13秒前
英俊的铭应助缓慢的语琴采纳,获得10
14秒前
77完成签到,获得积分20
14秒前
zyh完成签到,获得积分10
15秒前
16秒前
CipherSage应助菜狗采纳,获得10
17秒前
liumuyang0203关注了科研通微信公众号
18秒前
Stella完成签到,获得积分10
19秒前
小蘑菇应助无心的未来采纳,获得10
19秒前
李科通完成签到,获得积分10
19秒前
20秒前
22秒前
炙热萝完成签到,获得积分10
22秒前
23秒前
25秒前
小蘑菇应助Coral采纳,获得10
26秒前
妖精发布了新的文献求助10
27秒前
ee驳回了Triaxane应助
27秒前
28秒前
28秒前
28秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885386
求助须知:如何正确求助?哪些是违规求助? 3427473
关于积分的说明 10755641
捐赠科研通 3152383
什么是DOI,文献DOI怎么找? 1740283
邀请新用户注册赠送积分活动 840155
科研通“疑难数据库(出版商)”最低求助积分说明 785181