亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NRG Oncology Assessment of Artificial Intelligence Deep Learning–Based Auto-segmentation for Radiation Therapy: Current Developments, Clinical Considerations, and Future Directions

分割 医学 人工智能 放射肿瘤学 电流(流体) 医学物理学 计算机科学 放射治疗 内科学 工程类 电气工程
作者
Yi Rong,Quan Chen,Yabo Fu,Xiaofeng Yang,Hania Al‐Hallaq,Q Wu,L. Yuan,Ying Xiao,Bin Cai,Kujtim Latifi,Stanley Benedict,Jeffrey C. Buchsbaum,X. Sharon Qi
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:119 (1): 261-280 被引量:15
标识
DOI:10.1016/j.ijrobp.2023.10.033
摘要

Deep learning neural networks (DLNN) in Artificial intelligence (AI) have been extensively explored for automatic segmentation in radiotherapy (RT). In contrast to traditional model-based methods, data-driven AI-based models for auto-segmentation have shown high accuracy in early studies in research settings and controlled environment (single institution). Vendor-provided commercial AI models are made available as part of the integrated treatment planning system (TPS) or as a stand-alone tool that provides streamlined workflow interacting with the main TPS. These commercial tools have drawn clinics' attention thanks to their significant benefit in reducing the workload from manual contouring and shortening the duration of treatment planning. However, challenges occur when applying these commercial AI-based segmentation models to diverse clinical scenarios, particularly in uncontrolled environments. Contouring nomenclature and guideline standardization has been the main task undertaken by the NRG Oncology. AI auto-segmentation holds the potential clinical trial participants to reduce interobserver variations, nomenclature non-compliance, and contouring guideline deviations. Meanwhile, trial reviewers could use AI tools to verify contour accuracy and compliance of those submitted datasets. In recognizing the growing clinical utilization and potential of these commercial AI auto-segmentation tools, NRG Oncology has formed a working group to evaluate the clinical utilization and potential of commercial AI auto-segmentation tools. The group will assess in-house and commercially available AI models, evaluation metrics, clinical challenges, and limitations, as well as future developments in addressing these challenges. General recommendations are made in terms of the implementation of these commercial AI models, as well as precautions in recognizing the challenges and limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
17秒前
26秒前
柔弱友菱发布了新的文献求助200
31秒前
LRxxx完成签到 ,获得积分10
48秒前
Owen应助yyy采纳,获得10
53秒前
1分钟前
yyy发布了新的文献求助10
1分钟前
John发布了新的文献求助150
1分钟前
连安阳完成签到,获得积分10
1分钟前
mingyahaoa完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
隐形曼青应助柔弱友菱采纳,获得10
2分钟前
juan完成签到 ,获得积分10
2分钟前
纯情的寻绿完成签到 ,获得积分10
2分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
积极的中蓝完成签到 ,获得积分10
4分钟前
4分钟前
123完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
123发布了新的文献求助30
6分钟前
草木发布了新的文献求助10
7分钟前
幻梦如歌完成签到,获得积分10
7分钟前
草木发布了新的文献求助10
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
草木完成签到,获得积分20
7分钟前
桐桐应助草木采纳,获得10
7分钟前
zhang完成签到 ,获得积分10
8分钟前
zhang关注了科研通微信公众号
8分钟前
8分钟前
草木发布了新的文献求助10
8分钟前
草木发布了新的文献求助10
8分钟前
Able完成签到,获得积分10
8分钟前
靓丽的熠彤完成签到,获得积分10
8分钟前
9分钟前
科研通AI5应助zhang采纳,获得10
9分钟前
jiadi完成签到 ,获得积分10
9分钟前
cadcae完成签到,获得积分10
9分钟前
XD824完成签到,获得积分10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300859
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762599