Leveraging discriminative features for automatic sleep stage classification based on raw single-channel EEG

计算机科学 判别式 脑电图 睡眠阶段 睡眠(系统调用) 卷积神经网络 人工智能 模式识别(心理学) 特征(语言学) 频道(广播) 特征提取 语音识别 多导睡眠图 心理学 计算机网络 语言学 哲学 精神科 操作系统
作者
Xia Heng,Miao Wang,Zhongmin Wang,J. X. Zhang,Lang He,Lin Fan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105631-105631 被引量:10
标识
DOI:10.1016/j.bspc.2023.105631
摘要

Sleep staging is the basis for assessing sleep quality. In the process of scoring each sleep stage, some automatic sleep staging models often fail to effectively capture the more accurate long-range correlation coupling between the input sleep EEG signals and the output sleep stage, which leads to the extracted features cannot effectively distinguish the different sleep stages. We propose an automatic end-to-end sleep stage classification method based on the original single-channel sleep EEG signal to perform feature learning on the source domain information of critical parts of the sleep EEG signals and solve the long-term time series problem. The method uses a convolutional neural network (CNN) to extract the time–frequency domain features of signals. It introduces a squeeze-and-excitation block (SE-Block) on CNN to enhance the feature representation ability of CNN. At the same time, a bidirectional recurrent unit (Bi-GRU) is used to learn the conversion rules of sleep stages, and an attention mechanism is added to the decoding part of Bi-GRU to enhance the long-term memory capacity of Bi-GRU and highlight the influence of essential features. According to the particularity of sleep signals, this method combines multiple models and techniques and creatively blends them to improve the performance of automatic staging. To validate the accuracy and stability of the model, the Fpz-Cz channel and the Pz-Oz channel EEG signals in the Sleep-EDF sleep dataset are used for 10-fold cross-validation. The classification accuracy was 88.48% and 87.56%, respectively. The results show that under the same model architecture and dataset, our model has a more vital ability to extract essential features, better representation ability, more stable performance, and a relatively simple model structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yy发布了新的文献求助10
刚刚
1秒前
wgqiang完成签到,获得积分10
2秒前
今后应助喵喵采纳,获得10
2秒前
3秒前
CYYYY关注了科研通微信公众号
3秒前
4秒前
木木杨完成签到,获得积分10
4秒前
加油发布了新的文献求助10
4秒前
yishan101发布了新的文献求助10
5秒前
JinXueshan完成签到 ,获得积分10
5秒前
nick完成签到,获得积分10
5秒前
cossen完成签到,获得积分10
6秒前
6秒前
hfhfj发布了新的文献求助10
6秒前
彭于晏应助kuan采纳,获得10
8秒前
8秒前
8秒前
李健的小迷弟应助lanmin采纳,获得10
8秒前
大方剑愁完成签到 ,获得积分20
9秒前
SICHEN发布了新的文献求助10
10秒前
12秒前
kingwill发布了新的文献求助30
12秒前
珍妮发布了新的文献求助30
13秒前
小肆发布了新的文献求助10
14秒前
魔幻小白菜完成签到,获得积分10
14秒前
14秒前
英姑应助阿歪歪采纳,获得10
15秒前
18秒前
hfhfj完成签到,获得积分10
18秒前
21秒前
21秒前
21秒前
21秒前
lanmin发布了新的文献求助10
22秒前
22秒前
23秒前
Hedy发布了新的文献求助20
24秒前
卷卷完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073632
求助须知:如何正确求助?哪些是违规求助? 4293744
关于积分的说明 13379375
捐赠科研通 4115142
什么是DOI,文献DOI怎么找? 2253454
邀请新用户注册赠送积分活动 1258217
关于科研通互助平台的介绍 1191108