Leveraging discriminative features for automatic sleep stage classification based on raw single-channel EEG

计算机科学 判别式 脑电图 睡眠阶段 睡眠(系统调用) 卷积神经网络 人工智能 模式识别(心理学) 特征(语言学) 频道(广播) 特征提取 语音识别 多导睡眠图 心理学 计算机网络 语言学 哲学 精神科 操作系统
作者
Xia Heng,Miao Wang,Zhongmin Wang,J. X. Zhang,Lang He,Lin Fan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105631-105631 被引量:6
标识
DOI:10.1016/j.bspc.2023.105631
摘要

Sleep staging is the basis for assessing sleep quality. In the process of scoring each sleep stage, some automatic sleep staging models often fail to effectively capture the more accurate long-range correlation coupling between the input sleep EEG signals and the output sleep stage, which leads to the extracted features cannot effectively distinguish the different sleep stages. We propose an automatic end-to-end sleep stage classification method based on the original single-channel sleep EEG signal to perform feature learning on the source domain information of critical parts of the sleep EEG signals and solve the long-term time series problem. The method uses a convolutional neural network (CNN) to extract the time–frequency domain features of signals. It introduces a squeeze-and-excitation block (SE-Block) on CNN to enhance the feature representation ability of CNN. At the same time, a bidirectional recurrent unit (Bi-GRU) is used to learn the conversion rules of sleep stages, and an attention mechanism is added to the decoding part of Bi-GRU to enhance the long-term memory capacity of Bi-GRU and highlight the influence of essential features. According to the particularity of sleep signals, this method combines multiple models and techniques and creatively blends them to improve the performance of automatic staging. To validate the accuracy and stability of the model, the Fpz-Cz channel and the Pz-Oz channel EEG signals in the Sleep-EDF sleep dataset are used for 10-fold cross-validation. The classification accuracy was 88.48% and 87.56%, respectively. The results show that under the same model architecture and dataset, our model has a more vital ability to extract essential features, better representation ability, more stable performance, and a relatively simple model structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘才华完成签到 ,获得积分10
2秒前
汉堡包应助z_king_d_23采纳,获得10
2秒前
任侠传发布了新的文献求助10
3秒前
郁乾完成签到,获得积分10
3秒前
wanna发布了新的文献求助10
5秒前
qqqqq完成签到,获得积分10
6秒前
atom完成签到 ,获得积分10
6秒前
小不溜完成签到 ,获得积分10
6秒前
8秒前
8秒前
8秒前
希望天下0贩的0应助kuan采纳,获得10
8秒前
z_king_d_23完成签到,获得积分10
9秒前
dili完成签到,获得积分10
9秒前
wy发布了新的文献求助10
11秒前
lilililili完成签到,获得积分10
11秒前
科研助手发布了新的文献求助10
13秒前
dili发布了新的文献求助20
13秒前
13秒前
赘婿应助鱼鱼鱼采纳,获得10
13秒前
TsingFlower发布了新的文献求助10
14秒前
18秒前
可爱的函函应助KouZL采纳,获得10
18秒前
19秒前
景绝义发布了新的文献求助10
19秒前
20秒前
kuan发布了新的文献求助10
23秒前
昕冉关注了科研通微信公众号
23秒前
树懒发布了新的文献求助10
23秒前
24秒前
气味发布了新的文献求助10
24秒前
专一的白萱完成签到 ,获得积分10
25秒前
桐桐应助科研通管家采纳,获得30
26秒前
26秒前
orixero应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
科研助手6应助科研通管家采纳,获得10
26秒前
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805206
求助须知:如何正确求助?哪些是违规求助? 3350214
关于积分的说明 10347750
捐赠科研通 3066060
什么是DOI,文献DOI怎么找? 1683511
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765205