A new on-line combustion optimization approach for ultra-supercritical coal-fired boiler to improve boiler efficiency, reduce NOx emission and enhance operating safety

锅炉(水暖) 燃烧 工艺工程 工程类 氮氧化物 汽车工程 计算机科学 废物管理 化学 有机化学
作者
Wentao Xu,Yaji Huang,Siheng Song,Junfeng Yue,Bin Chen,Yuqing Liu,Yiran Zou
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128748-128748 被引量:1
标识
DOI:10.1016/j.energy.2023.128748
摘要

To take into account the economy, environment protection and operating safety of the boiler in the combustion optimization process, a new on-line combustion optimization approach for boiler is proposed. The historical combustion data collected from DCS of the coal-fired power plant is preprocessed at first. Then improved biogeography optimization-based long short-term memory neural network (IBBO-LSTM) and similarity measurement method are designed to construct the adaptive dynamic combustion model for boiler with boiler efficiency, NOx emission and the temperature of water wall as outputs respectively. After that improved non-dominated sorting genetic algorithm-Ⅱ (INSGA-Ⅱ) is designed to generate a series of boiler combustion optimization solutions under different running load offline, and improved multi-level fuzzy comprehensive evaluation (IDHGF) is designed to retain the combustion optimization solutions with higher running safety. Meanwhile, the retained optimization solutions are integrated into an optimization cases base. Thereafter, case-based reasoning based on safety enhancement mechanism (CBRSEM) is designed to achieve the online combustion optimization for boiler. Finally, to confirm the effectiveness of the combination of IBBO-LSTM, INSGA-Ⅱ, IDHGF and CBRSEM, different online optimization methods (IBBO-LSTM-INSGA-Ⅱ, IBBO-LSTM-INSGA-Ⅱ-IDHGF, IBBO-LSTM-NSGA-Ⅱ-DHGF-CBR, IBBO-LSTM-NSGA-Ⅱ-IDHGF-CBR, IBBO-LSTM-NSGA-Ⅱ-DHGF-CBRSEM, IBBO-LSTM-NSGA-Ⅱ-IDHGF-CBRSEM, IBBO-LSTM-INSGA-Ⅱ-DHGF-CBR, IBBO-LSTM-INSGA-Ⅱ-IDHGF-CBR) are adopted to optimize a given combustion case. The proposed on-line combustion optimization approach for boiler received satisfied combustion optimization results that the growing for boiler efficiency was 0.653%, and the reduced concentration for NOx emission reached 22.891 mg/m3, and the operating safety raised from 5.592 to 6.913. In conclusion, IBBO-LSTM-INSGA-Ⅱ-IDHGF-CBRSEM can online offer the combustion optimization strategy to the boiler operators to improve boiler efficiency, reduce NOx emission and enhance the running safety of boiler, so that it is suitable for online application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜懂菜菜完成签到,获得积分10
刚刚
刚刚
张瑶完成签到,获得积分10
2秒前
liy发布了新的文献求助10
2秒前
魏高丽完成签到,获得积分10
2秒前
orixero应助x夏天采纳,获得10
4秒前
5秒前
5秒前
慕青应助天光云影采纳,获得10
6秒前
桐桐应助木木夕云采纳,获得10
6秒前
冷酷的新梅完成签到,获得积分10
6秒前
852应助丽丽采纳,获得10
7秒前
Yuki完成签到,获得积分10
7秒前
lianyu完成签到,获得积分10
8秒前
8秒前
9秒前
huhu发布了新的文献求助10
10秒前
Jourmore发布了新的文献求助10
11秒前
快乐顽童完成签到,获得积分10
11秒前
12秒前
13秒前
毕业比耶发布了新的文献求助10
13秒前
13秒前
Hello应助chenxing1947采纳,获得10
14秒前
静心完成签到,获得积分10
14秒前
研友_ZzrwqZ发布了新的文献求助10
15秒前
怕孤独的如凡完成签到 ,获得积分10
15秒前
大西瓜发布了新的文献求助10
15秒前
16秒前
honey曼完成签到,获得积分20
16秒前
易达发布了新的文献求助10
16秒前
han完成签到,获得积分10
16秒前
852应助肖文泽采纳,获得10
16秒前
17秒前
blue2021发布了新的文献求助30
17秒前
x夏天发布了新的文献求助10
17秒前
18秒前
Wei完成签到,获得积分20
18秒前
19秒前
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4102193
求助须知:如何正确求助?哪些是违规求助? 3639772
关于积分的说明 11534452
捐赠科研通 3348775
什么是DOI,文献DOI怎么找? 1840125
邀请新用户注册赠送积分活动 907200
科研通“疑难数据库(出版商)”最低求助积分说明 824370