Performance optimization and defect studies of Pb-free CsSnBr3-based perovskite solar cells

材料科学 光伏系统 光伏 钙钛矿(结构) 能量转换效率 光电子学 带隙 开路电压 时域有限差分法 短路 商业化 工程物理 电流密度 表征(材料科学) 电压 纳米技术 电气工程 光学 物理 量子力学 化学工程 政治学 法学 工程类
作者
Taskina Nasrin,M. Mottakin,Vidhya Selvanathan,Yuen Hong Tsang,Md. Shahiduzzaman,Md. Ariful Islam,Shamim Ahamed,Hamad F. Alharbi,Md. Akhtaruzzaman
出处
期刊:Materials today communications [Elsevier]
卷期号:37: 107000-107000
标识
DOI:10.1016/j.mtcomm.2023.107000
摘要

Perovskite solar cells (PSCs) have become increasingly popular in the photovoltaic industry due to their high power conversion efficiency (PCE) and potential for low-cost manufacturing. However, despite the significant promise of lead-based PSCs, several challenges must be addressed before commercialization can occur. These challenges include toxicity and defects. As such, this study focuses on optimizing an environmentally friendly (non-toxic) PSC based on CsSnBr3 perovskite material. To achieve this objective, we examined various factors that influence the performance of the PSC, such as material bandgap, transport materials, individual layer thickness, and defect density associated with temperature effects. We also conducted a thorough analysis of the photovoltaic performance of the device. Our findings reveal that bulk and interface defects significantly impact the device's performance. Through our investigation and analysis, we were able to design an optimized device that exhibits a PCE of 17.94 %. This impressive performance was accompanied by a short-circuit current density (JSC) of 18 mA/cm2, an open-circuit voltage (VOC) of 1.3 V, and a fill factor (FF) of 74.5 %. Throughout the study, we utilized SCAPS-1D simulations to conduct a detailed optoelectronic study and analyze the device's performance. Furthermore, we employed 3D finite-difference time-domain (FDTD) optical simulations to validate the optical performance of the optimized device. Our study demonstrates that lead-free PSCs have significant potential in photovoltaics. By optimizing the manufacturing process and addressing the challenges associated with these materials, we can unlock even more tremendous potential for this technology. Overall, our numerical study can be a valuable resource for researchers and industry professionals in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方秦兰完成签到 ,获得积分10
刚刚
VirgoYn完成签到,获得积分10
3秒前
MrRen完成签到,获得积分10
4秒前
jue关注了科研通微信公众号
5秒前
震动的飞荷完成签到 ,获得积分10
5秒前
7秒前
1111发布了新的文献求助10
7秒前
2011509382完成签到,获得积分10
8秒前
OOPS完成签到,获得积分10
10秒前
11秒前
Self-made发布了新的文献求助10
12秒前
普萘洛尔发布了新的文献求助10
12秒前
深情的鞯发布了新的文献求助100
13秒前
lwlwlw完成签到,获得积分10
13秒前
14秒前
俏皮芹完成签到,获得积分10
14秒前
咕噜噜发布了新的文献求助10
14秒前
淡淡采白发布了新的文献求助10
15秒前
巾帼完成签到,获得积分10
16秒前
1111完成签到,获得积分10
18秒前
xxl发布了新的文献求助10
19秒前
19秒前
CipherSage应助刘娟娟采纳,获得10
20秒前
21秒前
Yian完成签到,获得积分10
22秒前
自然夜天完成签到,获得积分10
22秒前
天道酬勤发布了新的文献求助10
22秒前
雨淋沐风完成签到,获得积分10
23秒前
无花果应助咕噜噜采纳,获得10
23秒前
24秒前
我吃小月亮完成签到,获得积分10
25秒前
jue发布了新的文献求助30
26秒前
啊萌萌发布了新的文献求助10
27秒前
Silver发布了新的文献求助10
28秒前
SHAN完成签到,获得积分10
29秒前
Self-made完成签到,获得积分20
30秒前
yiseeya应助fhhkckk3采纳,获得10
32秒前
arsenal发布了新的文献求助10
32秒前
33秒前
34秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Pressing the Fight: Print, Propaganda, and the Cold War 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2470842
求助须知:如何正确求助?哪些是违规求助? 2137574
关于积分的说明 5446708
捐赠科研通 1861598
什么是DOI,文献DOI怎么找? 925820
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495244