亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Multi-Task Learning with Non-Stationary and Heterogeneous Data in Wireless Networks

计算机科学 推论 机器学习 无线 分歧(语言学) 随机性 趋同(经济学) 数据建模 无线网络 人工智能 数据挖掘 经济增长 电信 数据库 统计 数学 哲学 经济 语言学
作者
Hongwei Zhang,Meixia Tao,Yuanming Shi,Xiaoyan Bi,Khaled B. Letaief
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2653-2667 被引量:2
标识
DOI:10.1109/twc.2023.3301611
摘要

Federated multi-task learning (FMTL) is a promising edge learning framework to fit the data with non-independent and non-identical distribution (non-i.i.d.) by leveraging the statistical correlations among the personalized models. For many practical applications in wireless communications, the sensory data are not only heterogeneous but also non-stationary due to the mobility of terminals and the randomness of link connections. The non-stationary heterogeneous data may lead to model divergence and staleness in the training stage and poor test accuracy in the inference stage. In this paper, we shall develop an adaptive FMTL framework, which works well with non-stationary data. We further propose to optimize the model updating and cluster splitting schemes in the training stage to accelerate model convergence. We also design a low-complexity model selection and pruning schemes in both the training and inference stages to select the best model for fitting the current data and delete redundant models, respectively. The proposed framework is validated in the edge learning model, namely, the linear regression problem for indoor localization in wireless networks and GNN for wireless power control problems. Numerical results demonstrate that the proposed framework can accelerate the model training convergence and reduce the computation complexity while ensuring model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助qiqi采纳,获得10
14秒前
21秒前
33秒前
九月发布了新的文献求助10
37秒前
46秒前
51秒前
核桃应助科研通管家采纳,获得50
59秒前
59秒前
Hiraeth完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
学术之神庇佑的一完成签到,获得积分10
1分钟前
qiqi完成签到,获得积分10
1分钟前
西西完成签到,获得积分20
1分钟前
1分钟前
qiqi发布了新的文献求助10
1分钟前
深情安青应助啊啊啊啊采纳,获得10
1分钟前
2分钟前
啊啊啊啊发布了新的文献求助10
2分钟前
2分钟前
典雅问寒应助啊啊啊啊采纳,获得10
2分钟前
2分钟前
章鱼完成签到,获得积分10
2分钟前
核桃应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
testmanfuxk完成签到,获得积分10
3分钟前
lijianguo完成签到,获得积分10
3分钟前
小蘑菇应助颜沛文采纳,获得10
3分钟前
4分钟前
颜沛文发布了新的文献求助10
4分钟前
颜沛文完成签到,获得积分10
4分钟前
4分钟前
RED发布了新的文献求助10
4分钟前
Ava应助Sience采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
九月发布了新的文献求助10
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804115
求助须知:如何正确求助?哪些是违规求助? 3348989
关于积分的说明 10341016
捐赠科研通 3065137
什么是DOI,文献DOI怎么找? 1682911
邀请新用户注册赠送积分活动 808555
科研通“疑难数据库(出版商)”最低求助积分说明 764600