已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Subsurface Modeling with Sequential Patch Generative Adversarial Neural Networks

计算机科学 人工神经网络 地下水流 人工智能 机器学习 启发式 算法 地质学 地下水 岩土工程
作者
Wen Pan,Jiefu Chen,Sabri Mohamed,Honggeun Jo,Javier E. Santos,Michael J. Pyrcz
出处
期刊:SPE Annual Technical Conference and Exhibition 被引量:5
标识
DOI:10.2118/214985-ms
摘要

Abstract Subsurface modeling is important for subsurface resource development, energy storage, and CO2 sequestration. Many geostatistical and machine learning methods are developed to quantify the subsurface uncertainty by generating subsurface model realizations. Good subsurface models should reproduce depositional patterns in training images (satellite images, outcrops, digital rock, or conceptual models) that are important to fluid flow. However, current methods are computationally demanding, which makes it prohibitively expensive for building large-scale, detailed subsurface model realizations. In this work, we develop the sequential patch generative adversarial neural network (GAN), a computationally efficient method to perform machine learning- and patch-based, sequential subsurface modeling. The new machine learning method uses shift-invariant neural network structures to allow efficient sequential modeling. In addition, it maps subsurface models to a Gaussian latent space, which allows easier data conditioning and better model parameterization. Three optimization methods for well data conditioning are compared based on pattern reproduction in subsurface model realizations. Compared to conventional multiple-point statistics (MPS) methods, the new method is faster, requires fewer computational resources, and does not present artifacts in realizations. Compared to previous generative models, the new method is more interpretable and efficient in large geological modeling. For data conditioning, we find the posterior latent variables need to have the same statistical distribution as the prior to reproduce patterns. The sequential patch GAN method is proven to be an efficient machine learning method for large-scale, detailed, subsurface modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助帅气的盼芙采纳,获得10
2秒前
3秒前
3秒前
科研通AI5应助端庄一刀采纳,获得30
4秒前
4秒前
5秒前
weing完成签到,获得积分10
6秒前
8秒前
今后应助胞嘧啶jane采纳,获得10
8秒前
8秒前
丙泊酚发布了新的文献求助20
9秒前
dyd发布了新的文献求助30
10秒前
等待霸完成签到,获得积分10
12秒前
13秒前
lmp发布了新的文献求助10
13秒前
15秒前
132132zl完成签到,获得积分10
15秒前
17秒前
阿九发布了新的文献求助10
18秒前
Apple完成签到,获得积分10
18秒前
18秒前
20秒前
demom完成签到 ,获得积分10
23秒前
兴奋的若菱完成签到 ,获得积分10
24秒前
赘婿应助小巧初柔采纳,获得10
24秒前
26秒前
阿九完成签到,获得积分10
27秒前
Sam完成签到 ,获得积分10
32秒前
34秒前
35秒前
36秒前
田様应助满意的晓啸采纳,获得10
37秒前
38秒前
情怀应助科研通管家采纳,获得10
39秒前
汉堡包应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得10
39秒前
大模型应助科研通管家采纳,获得10
39秒前
英姑应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111131
求助须知:如何正确求助?哪些是违规求助? 3649419
关于积分的说明 11559020
捐赠科研通 3354623
什么是DOI,文献DOI怎么找? 1842994
邀请新用户注册赠送积分活动 909186
科研通“疑难数据库(出版商)”最低求助积分说明 825950