Mental fatigue assessment by an arbitrary channel EEG based on morphological features and LSTM-CNN

脑电图 卷积神经网络 模式识别(心理学) 人工智能 计算机科学 频道(广播) 清醒 一般化 特征(语言学) 特征提取 心理学 数学 神经科学 计算机网络 数学分析 语言学 哲学
作者
Xiaolong Wu,Jianhong Yang,Yongcong Shao,Xuewei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107652-107652 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107652
摘要

In order to achieve more sensitive mental fatigue assessment (MFA) based on an arbitrary channel EEG, this study proposed a series of feature extraction methods that combine mathematical morphology (MM), as well as an LSTM-CNN architecture. Firstly, 37 subjects had their resting-state EEGs collected at rested wakefulness (RW) and after 24 h of sleep deprivation (SD) using a 30-channel EEG acquisition device, the RW and SD groups were regarded as the negative and positive groups of mental fatigue, respectively, and the EEG collection were further categorized into two conditions: eye-opened state (EO) and eye-closed state (EC). Then, since MM can reflect the morphological characteristics of EEG rhythms and their potentials relatively independently of the time-frequency analysis and phase calculation, the MM methods were found to better reflect the mental fatigue after SD statistically, whether for single features (ANOVA: p<0.000001), multiple features (clustering by K-means, t-test: p<0.01), or time series feature spaces (calculating CD, t-test: p<0.01) of a single channel. Finally, the LSTM-CNN enhanced the generalization ability when dealing with different single-channel EEG by combining GRUs with convolutional layers: comparing the AUCs of different architectures for MFA based on an arbitrary channel, LSTM-CNN (0.992) > LSTM network (0.94) > CNN (0.831) > MLP (0.754). Moreover, the use of MM also improved the accuracy of analyzed architectures, and the true/false positive rate (TPR/FPR) of the LSTM-CNN architecture for MFA based on an arbitrary channel reached 97.024 %/3.497 %, which provided a feasible solution for the arbitrary channel EEG-based MFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助彩虹糖采纳,获得10
刚刚
脑洞疼应助曼凡采纳,获得10
3秒前
善学以致用应助dpp采纳,获得10
6秒前
Hello应助清秀的笑白采纳,获得10
6秒前
清圆527完成签到,获得积分10
8秒前
zlh发布了新的文献求助10
11秒前
附件开始看完成签到,获得积分10
11秒前
哈哈呵完成签到,获得积分10
13秒前
16秒前
16秒前
18秒前
18秒前
Xiaoxiao应助清圆527采纳,获得10
20秒前
杨怂怂完成签到 ,获得积分10
21秒前
zhangjianan发布了新的文献求助10
22秒前
dpp发布了新的文献求助10
23秒前
25秒前
ding应助kk采纳,获得10
26秒前
我真不混啊完成签到,获得积分10
28秒前
科研通AI2S应助听风采纳,获得10
31秒前
31秒前
orixero应助附件开始看采纳,获得10
32秒前
善良的疯丫头完成签到,获得积分10
34秒前
小橘子会发光完成签到,获得积分10
38秒前
CipherSage应助小灰灰采纳,获得10
39秒前
40秒前
英俊的铭应助GGGirafe采纳,获得10
40秒前
CodeCraft应助善良的疯丫头采纳,获得10
40秒前
DOU应助听风采纳,获得10
41秒前
隐形曼青应助孙军涛采纳,获得10
41秒前
Chroninus完成签到,获得积分10
42秒前
朴素的雁菱完成签到,获得积分10
43秒前
kk发布了新的文献求助10
45秒前
Dabao完成签到,获得积分20
47秒前
xiaoxie完成签到 ,获得积分10
47秒前
要减肥冰菱完成签到 ,获得积分10
48秒前
Linux2000Pro完成签到,获得积分10
48秒前
科研通AI5应助HH采纳,获得30
49秒前
KanmenRider完成签到,获得积分10
50秒前
52秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169659
求助须知:如何正确求助?哪些是违规求助? 3704993
关于积分的说明 11692063
捐赠科研通 3391773
什么是DOI,文献DOI怎么找? 1860104
邀请新用户注册赠送积分活动 920263
科研通“疑难数据库(出版商)”最低求助积分说明 832631