A Lightweight Multiscale Neural Network for Indoor Human Activity Recognition Based on Macro and Micro-Doppler Features

计算机科学 人工神经网络 多普勒效应 活动识别 模式识别(心理学) 人工智能 语音识别 天文 物理 程序设计语言
作者
Xiaopeng Yang,Weicheng Gao,Xiaodong Qu,Peng Yin,Haoyu Meng,Aly E. Fathy
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 21836-21854 被引量:7
标识
DOI:10.1109/jiot.2023.3301519
摘要

Through-the-wall radar (TWR) achieves indoor human activity recognition (HAR) by extracting Doppler and micro-Doppler features. However, the conventional deep learning-based HAR methods have the shortcomings of low accuracy and long inference time. To solve these problems, a lightweight multiscale neural network for indoor HAR based on macro and micro-Doppler features (TWR-FMSN) is proposed in this article. In the proposed method, the trajectories of macroscopic Doppler and microscopic Doppler features are defined first and the integrated models are applied to label the trajectories at both scales for recognition. An efficient attention-mechanism-based lightweight target detection neural network with the Lagrangian trajectory estimation is proposed to obtain macro-Doppler features of human motion. In addition, a kernel-distance-based micro-Doppler labeling method is utilized to obtain the micro-Doppler features of human motion. Finally, all the extracted macro-Doppler and micro-Doppler features are concatenated together for the decision of indoor HAR. The effectiveness of the proposed method is verified by experiments, and the results show that the proposed method can significantly reduce the inference time while retaining high recognition accuracy, which shows great potential in real-time deployment for the practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茜茜哥哥发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助黄凯采纳,获得10
9秒前
10秒前
小蘑菇应助jie采纳,获得10
14秒前
14秒前
17秒前
啊嘞哇塞发布了新的文献求助10
17秒前
jingrong发布了新的文献求助10
17秒前
18秒前
FF完成签到 ,获得积分10
18秒前
和谐续发布了新的文献求助10
19秒前
从容的巧曼完成签到 ,获得积分10
20秒前
23发布了新的文献求助10
23秒前
阿达发布了新的文献求助10
23秒前
24秒前
26秒前
26秒前
27秒前
27秒前
29秒前
29秒前
29秒前
yunna_ning完成签到,获得积分0
31秒前
爆米花应助LX采纳,获得30
31秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
大模型应助科研通管家采纳,获得10
32秒前
jie发布了新的文献求助10
32秒前
大个应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
33秒前
筱楠发布了新的文献求助10
34秒前
酷波er应助专注的问筠采纳,获得10
34秒前
34秒前
39秒前
44秒前
狂野傲薇发布了新的文献求助10
45秒前
45秒前
跳跃的以蕊完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780594
求助须知:如何正确求助?哪些是违规求助? 3326087
关于积分的说明 10225549
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669225
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669