A Comprehensive Survey on Multi-View Clustering

计算机科学 人气 聚类分析 数据科学 机器学习 人工智能 启发式 特征学习 数据挖掘 心理学 社会心理学
作者
Uno Fang,Man Li,Jianxin Li,Longxiang Gao,Tao Jia,Yanchun Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 12350-12368 被引量:234
标识
DOI:10.1109/tkde.2023.3270311
摘要

The development of information gathering and extraction technology has led to the popularity of multi-view data, which enables samples to be seen from numerous perspectives. Multi-view clustering (MVC), which groups data samples by leveraging complementary and consensual information from several views, is gaining popularity. Despite the rapid evolution of MVC approaches, there has yet to be a study that provides a full MVC roadmap for both stimulating technical improvements and orienting research newbies to MVC. In this article, we review recent MVC techniques with the purpose of exhibiting the concepts of popular methodologies and their advancements. This survey not only serves as a unique MVC comprehensive knowledge for researchers but also has the potential to spark new ideas in MVC research. We summarise a large variety of current MVC approaches based on two technical mechanisms: heuristic-based multi-view clustering (HMVC) and neural network-based multi-view clustering (NNMVC). We end with four technological approaches within the category of HMVC: nonnegative matrix factorisation, graph learning, latent representation learning, and tensor learning. Deep representation learning and deep graph learning are two technical methods that we demonstrate in NNMVC. We also show 15 publicly available multi-view datasets and examine how representative MVC approaches perform on them. In addition, this study identifies the potential research directions that may require further investigation in order to enhance the further development of MVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siqilinwillbephd完成签到,获得积分10
1秒前
华仔应助Zoro采纳,获得10
4秒前
充电宝应助alex采纳,获得10
4秒前
6秒前
wubuking完成签到 ,获得积分10
8秒前
CALCULATING发布了新的文献求助10
9秒前
方yc发布了新的文献求助10
12秒前
14秒前
Zoro发布了新的文献求助10
17秒前
科研通AI6.1应助加菲丰丰采纳,获得10
17秒前
殁177发布了新的文献求助10
22秒前
科研通AI6.1应助llfire采纳,获得10
22秒前
乌拉发布了新的文献求助10
22秒前
CALCULATING完成签到,获得积分10
32秒前
搞怪的溪灵完成签到,获得积分10
32秒前
霸气南珍应助艾克哩哩采纳,获得10
36秒前
无极微光应助Zoro采纳,获得20
36秒前
37秒前
科研通AI6.1应助小青龙采纳,获得10
40秒前
愉快的藏今完成签到,获得积分10
42秒前
46秒前
Clearly完成签到 ,获得积分10
48秒前
zxer发布了新的文献求助30
51秒前
52秒前
Wait201113应助13508104971采纳,获得10
54秒前
wenwen发布了新的文献求助10
55秒前
SciGPT应助wdy采纳,获得10
56秒前
56秒前
搜集达人应助Luchy采纳,获得10
56秒前
你好发布了新的文献求助10
59秒前
勤奋的冬萱完成签到,获得积分10
59秒前
59秒前
一隅完成签到 ,获得积分10
59秒前
勋勋xxx发布了新的文献求助10
1分钟前
Orange应助zxer采纳,获得10
1分钟前
ZZZ完成签到,获得积分10
1分钟前
13508104971完成签到,获得积分10
1分钟前
zz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863828
求助须知:如何正确求助?哪些是违规求助? 6395716
关于积分的说明 15649777
捐赠科研通 4978024
什么是DOI,文献DOI怎么找? 2685223
邀请新用户注册赠送积分活动 1628307
关于科研通互助平台的介绍 1585991