Base‐isolation design of shear wall structures using physics‐rule‐co‐guided self‐supervised generative adversarial networks

人工神经网络 分离(微生物学) 工程类 计算机科学 人工智能 生物 微生物学
作者
Wenjie Liao,Xinyu Wang,Yifan Fei,Yuli Huang,Linlin Xie,Xinzheng Lu
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:52 (11): 3281-3303 被引量:19
标识
DOI:10.1002/eqe.3862
摘要

Abstract Seismic isolation can significantly improve the seismic resilience of buildings, resulting in a growing demand for seismic isolation designs. Meanwhile, the deep generative network‐based intelligent design can significantly increase scheme design efficiency. However, the performance of existing intelligent scheme designs is constrained by data quality and quantity. The limited availability of isolation design data hinders the development of intelligent seismic isolation design. Therefore, there is an emerging demand to establish an intelligent scheme design method that is free from data constraints and that can learn the physical mechanism and design rules. Consequently, this study proposes a physics‐rule‐co‐guided self‐supervised generative adversarial network (GAN) that can generate the layout and parameters of seismic isolation bearings by inputting the layout drawings of the shear wall structures. The critical physics‐rule‐co‐guided network model consists of a physics estimator, rule evaluator, discriminator, and design generator. The physics estimator is a deep neural network‐based surrogate model for predicting the mechanical response of an isolated structure, whereas the rule evaluator is a tensor operation‐based loss calculator that considers design rules. Furthermore, the proposed GAN model masters the schematic design ability of the seismic isolation of shear wall structures through multiphase hybrid learning of the pseudo‐labels, physical mechanism, and isolation design rules, obviating the need for ground‐truth data. Case studies also prove the rationality of the method, where the design results can effectively meet the code requirements and reduce the seismic response of the structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助禛禛采纳,获得10
1秒前
2秒前
一颗橙子发布了新的文献求助10
2秒前
2秒前
高挑的洋葱完成签到,获得积分10
2秒前
天天快乐应助何事惊慌采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
柳絮吹雪发布了新的文献求助10
8秒前
yxl完成签到,获得积分10
9秒前
凌灵翎发布了新的文献求助10
9秒前
10秒前
panpan发布了新的文献求助10
11秒前
wanci应助鼠李采纳,获得10
11秒前
12秒前
禛禛完成签到,获得积分20
12秒前
13秒前
Akim应助猪猪hero采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得20
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
李爱国应助心灵美的紫槐采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
无极微光应助科研通管家采纳,获得20
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
dew应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得30
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
15秒前
Sea_U应助科研通管家采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035867
求助须知:如何正确求助?哪些是违规求助? 4268837
关于积分的说明 13308595
捐赠科研通 4079629
什么是DOI,文献DOI怎么找? 2231666
邀请新用户注册赠送积分活动 1239798
关于科研通互助平台的介绍 1165743