Base‐isolation design of shear wall structures using physics‐rule‐co‐guided self‐supervised generative adversarial networks

人工神经网络 分离(微生物学) 工程类 计算机科学 人工智能 生物 微生物学
作者
Wenjie Liao,Xinyu Wang,Yifan Fei,Yuli Huang,Linlin Xie,Xinzheng Lu
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:52 (11): 3281-3303 被引量:19
标识
DOI:10.1002/eqe.3862
摘要

Abstract Seismic isolation can significantly improve the seismic resilience of buildings, resulting in a growing demand for seismic isolation designs. Meanwhile, the deep generative network‐based intelligent design can significantly increase scheme design efficiency. However, the performance of existing intelligent scheme designs is constrained by data quality and quantity. The limited availability of isolation design data hinders the development of intelligent seismic isolation design. Therefore, there is an emerging demand to establish an intelligent scheme design method that is free from data constraints and that can learn the physical mechanism and design rules. Consequently, this study proposes a physics‐rule‐co‐guided self‐supervised generative adversarial network (GAN) that can generate the layout and parameters of seismic isolation bearings by inputting the layout drawings of the shear wall structures. The critical physics‐rule‐co‐guided network model consists of a physics estimator, rule evaluator, discriminator, and design generator. The physics estimator is a deep neural network‐based surrogate model for predicting the mechanical response of an isolated structure, whereas the rule evaluator is a tensor operation‐based loss calculator that considers design rules. Furthermore, the proposed GAN model masters the schematic design ability of the seismic isolation of shear wall structures through multiphase hybrid learning of the pseudo‐labels, physical mechanism, and isolation design rules, obviating the need for ground‐truth data. Case studies also prove the rationality of the method, where the design results can effectively meet the code requirements and reduce the seismic response of the structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pannn发布了新的文献求助10
1秒前
熊熊阁发布了新的文献求助10
1秒前
论文狗发布了新的文献求助10
3秒前
5秒前
Minus完成签到,获得积分10
6秒前
6秒前
今后应助Y_Y采纳,获得10
6秒前
张铭完成签到,获得积分10
7秒前
小蘑菇应助顺利的忆文采纳,获得10
8秒前
8秒前
丘比特应助熊熊阁采纳,获得10
10秒前
涛浪完成签到,获得积分10
10秒前
orixero应助小松采纳,获得10
11秒前
小韦发布了新的文献求助10
13秒前
竹本完成签到 ,获得积分10
13秒前
hzs发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
无花果应助炸胡娃娃采纳,获得10
16秒前
18秒前
18秒前
凡凡发布了新的文献求助10
18秒前
orixero应助Miranda采纳,获得10
20秒前
vippp发布了新的文献求助10
20秒前
Nike发布了新的文献求助10
22秒前
LRxxx完成签到 ,获得积分0
23秒前
24秒前
脑洞疼应助1234采纳,获得10
24秒前
24秒前
25秒前
情怀应助伯丛筠采纳,获得10
26秒前
希望天下0贩的0应助凡凡采纳,获得10
27秒前
28秒前
医疗搜救犬完成签到 ,获得积分10
28秒前
炸胡娃娃发布了新的文献求助10
30秒前
Lucas应助刻苦傲安采纳,获得10
30秒前
pattrick发布了新的文献求助10
31秒前
lqy完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5833113
求助须知:如何正确求助?哪些是违规求助? 6077339
关于积分的说明 15587141
捐赠科研通 4952127
什么是DOI,文献DOI怎么找? 2668575
邀请新用户注册赠送积分活动 1613980
关于科研通互助平台的介绍 1568833