表达数量性状基因座
生物
全基因组关联研究
数量性状位点
孟德尔随机化
基因座(遗传学)
遗传学
计算生物学
基因
单核苷酸多态性
基因型
遗传变异
作者
Niek de Klein,Ellen Tsai,Martijn Vochteloo,Denis Baird,Yunfeng Huang,Chia‐Yen Chen,Sipko van Dam,Roy Oelen,Patrick Deelen,Olivier B. Bakker,Omar El Garwany,Zhengyu Ouyang,Eric Marshall,Maria I. Zavodszky,Wouter van Rheenen,Mark K. Bakker,Jan H. Veldink,Tom R. Gaunt,Heiko Runz,Lude Franke
出处
期刊:Nature Genetics
[Nature Portfolio]
日期:2023-02-23
卷期号:55 (3): 377-388
被引量:178
标识
DOI:10.1038/s41588-023-01300-6
摘要
Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI