Multiobjective Optimization and Machine Learning Algorithms for Forecasting the 3E Performance of a Concentrated Photovoltaic-Thermoelectric System

热电效应 光伏系统 热的 算法 理想(伦理) 热电发电机 拓扑(电路) 热电材料 理想点,理想点 计算机科学 工程物理 机械工程 数学 材料科学 电气工程 物理 工程类 热力学 几何学 组合数学 认识论 哲学
作者
Hisham Alghamdi,Chika Maduabuchi,Aminu Yusuf,Sameer Al‐Dahidi,Abdullah Albaker,Ibrahim Alatawi,Theyab R. Alsenani,Ahmed S. Alsafran,Mohammed A. AlAqil,Mohammad Alkhedher
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2023: 1-22 被引量:16
标识
DOI:10.1155/2023/6418897
摘要

Previous theoretical research efforts which were validated by experimental findings demonstrated the thermo-economic benefits of the hybrid concentrated photovoltaic-thermoelectric (CPV-TE) system over the stand-alone CPV. However, the operating conditions and TE material properties for maximum CPV-TE performance may differ from those required in a standalone thermoelectric module (TEM). For instance, a high-performing TEM requires TE materials with high Seebeck coefficients and electrical conductivities, and at the same time, low thermal conductivities ( k ). Although it is difficult to attain these ideal conditions without complex material engineering, the low k implies a high thermal resistance and temperature difference across the TEM which raises the PV backplate’s temperature in a hybrid CPV-TE operation. The increased PV temperature may reduce the overall system’s thermodynamic performance. To understand this phenomenon, a study is needed to guide researchers in choosing the best TE material for an optimal operation of a CPV-TE system. However, no prior research effort has been made to this effect. One method of finding the optimum TE material property is to parametrically vary one or more transport parameters until an optimum point is determined. However, this method is time-consuming and inefficient since a global optimum may not be found, especially when large incremental step sizes are used. This study provides a better way to solve this problem by using a multiobjective optimization genetic algorithm (MOGA) which is fast and reliable and ensures that the global optimum is obtained. After the optimization has been conducted, the best performing conditions for maximum CPV-TE energy, exergy, and environmental (3E) performance are selected using the technique for order performance by similarity to ideal solution (TOPSIS) decision algorithm. Finally, the optimization workflow is deployed for 7000 test cases generated from 10 features using the optimal machine learning (ML) algorithm. The result of the optimization chosen by the TOPSIS decision-making method generated an output power, exergy efficiency, and CO2 saving of 44.6 W, 18.3%, and 0.17 g/day, respectively. Furthermore, among other ML algorithms, the Gaussian process regression was the most accurate in learning the CPV-TE performance dataset, although it required more computational effort than some algorithms like the linear regression model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
烟花应助陶醉的开山采纳,获得10
2秒前
风衣拖地发布了新的文献求助10
2秒前
vivi完成签到 ,获得积分10
3秒前
3秒前
xiaolu完成签到,获得积分10
3秒前
田国兵发布了新的文献求助10
3秒前
朴实洪纲完成签到,获得积分20
4秒前
大方岩完成签到,获得积分10
4秒前
在水一方应助杂兵甲采纳,获得10
4秒前
LL关注了科研通微信公众号
4秒前
小尾巴完成签到 ,获得积分10
5秒前
5秒前
5秒前
千yu完成签到,获得积分10
5秒前
6秒前
moneymonoo发布了新的文献求助10
7秒前
现代的唯雪完成签到,获得积分10
9秒前
精明外套发布了新的文献求助10
10秒前
10秒前
张三三发布了新的文献求助10
11秒前
情怀应助哦哦哦采纳,获得10
11秒前
11秒前
12秒前
zwd完成签到 ,获得积分10
12秒前
Charles完成签到,获得积分10
13秒前
qwer完成签到 ,获得积分10
13秒前
13秒前
moneymonoo完成签到,获得积分20
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
哦哦哦完成签到,获得积分10
17秒前
17秒前
沈沈完成签到 ,获得积分10
18秒前
徐枘发布了新的文献求助10
19秒前
超级感谢大佬滴帮助完成签到,获得积分10
19秒前
英俊的铭应助Sci666采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265