已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based approaches for clinical and non-clinical depression recognition and depression relapse prediction using audiovisual and EEG modalities: A comprehensive review

模式 萧条(经济学) 脑电图 重性抑郁障碍 心理学 人工智能 计算机科学 机器学习 精神科 临床心理学 认知 社会科学 宏观经济学 社会学 经济
作者
Sana Yasin,Alice Othmani,Imran Raza,Syed Asad Hussain
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:159: 106741-106741 被引量:30
标识
DOI:10.1016/j.compbiomed.2023.106741
摘要

Mental disorders are rapidly increasing each year and have become a major challenge affecting the social and financial well-being of individuals. There is a need for phenotypic characterization of psychiatric disorders with biomarkers to provide a rich signature for Major Depressive Disorder, improving the understanding of the pathophysiological mechanisms underlying these mental disorders. This comprehensive review focuses on depression and relapse detection modalities such as self-questionnaires, audiovisuals, and EEG, highlighting noteworthy publications in the last ten years. The article concentrates on the literature that adopts machine learning by audiovisual and EEG signals. It also outlines preprocessing, feature extraction, and public datasets for depression detection. The review concludes with recommendations that will help improve the reliability of developed models and the determinism of computational intelligence-based systems in psychiatry. To the best of our knowledge, this survey is the first comprehensive review on depression and relapse prediction by self-questionnaires, audiovisual, and EEG-based approaches. The findings of this review will serve as a useful and structured starting point for researchers studying clinical and non-clinical depression recognition and relapse through machine learning-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的驳完成签到,获得积分20
1秒前
2秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
活力的驳发布了新的文献求助10
5秒前
5秒前
sssyq发布了新的文献求助10
5秒前
8秒前
8秒前
vivi完成签到 ,获得积分10
11秒前
十七完成签到 ,获得积分10
12秒前
Akim应助奋斗清炎采纳,获得10
13秒前
尛破孩发布了新的文献求助20
14秒前
15秒前
16秒前
zmy完成签到,获得积分10
17秒前
18秒前
19秒前
21秒前
雨相所至发布了新的文献求助10
21秒前
zmy发布了新的文献求助10
22秒前
上官若男应助ZY采纳,获得10
23秒前
奋斗清炎发布了新的文献求助10
24秒前
MA完成签到 ,获得积分10
25秒前
26秒前
研友_LXjjOZ完成签到,获得积分10
27秒前
29秒前
sssyq完成签到,获得积分10
31秒前
儒雅的晓曼完成签到,获得积分20
31秒前
lw完成签到,获得积分10
31秒前
32秒前
33秒前
Superg发布了新的文献求助10
35秒前
az完成签到 ,获得积分10
36秒前
悟空发布了新的文献求助10
38秒前
zho应助小李采纳,获得10
40秒前
bkagyin应助Superg采纳,获得10
41秒前
一滴水发布了新的文献求助10
42秒前
微笑的井完成签到 ,获得积分10
44秒前
小二郎应助谦让的芷荷采纳,获得10
45秒前
张娇关注了科研通微信公众号
45秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798274
求助须知:如何正确求助?哪些是违规求助? 3343710
关于积分的说明 10317375
捐赠科研通 3060458
什么是DOI,文献DOI怎么找? 1679559
邀请新用户注册赠送积分活动 806689
科研通“疑难数据库(出版商)”最低求助积分说明 763282