Evaluation of machine learning models for optimization of internal combustion engines: A comparative study

作者
David Sebastián,César Augusto Solano-Corzo,Sebastian Camilo Tovar-Pedraza,Juan Miguel Mantilla-González,Jay P. Gore
出处
期刊:International Journal of Engine Research [SAGE]
标识
DOI:10.1177/14680874251377140
摘要

The high costs associated with Computational Fluid Dynamics (CFD) predictions limits the execution of some optimization processes of internal combustion engines. The use of machine learning algorithms instead of CFD during optimization of a spark ignition engine fueled with a biomass-derived syngas is proposed. Polynomial regression, support vector regression, Gaussian process regression, artificial neural networks, and random forest are the artificial intelligence methods considered. A general methodology for building, tuning, evaluating, and comparing machine learning models is presented. The fuel injection pressure data are utilized to estimate fuel consumption, equivalence ratio, nitrogen oxides emissions, and indicated mean effective pressure of the engine operating at 2500 and 4500 rpm. Results from previous CFD-based optimization studies are utilized to train, validate, and evaluate the models. All methods are K -fold cross-validated to determine their hyperparameters. Then, the models are evaluated by comparing their predictions accuracies for each output on a test data set. The results show that polynomial regression is the most accurate model to estimate fuel consumption and equivalence ratio with ( R 2 ≥ 0.99999), while support vector regression demonstrates superior accuracy to estimate nitrogen oxides emissions and indicated mean effective pressure with ( R 2 ≥ 0.99977). Overall, when averaging the accuracy of results across the four outputs, support vector regression emerges as the most accurate method ( R 2 ≥ 0.99991), followed by Gaussian process regression ( R 2 ≥ 0.99986). Subsequently, the optimization processes are executed using the selected learning models, leading to improved optimization outcomes with significantly reduced computational costs compared to those of the previous CFD-based optimization works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
luoqin发布了新的文献求助10
1秒前
文静元霜发布了新的文献求助10
2秒前
lxcy0612发布了新的文献求助10
3秒前
小月Anna完成签到,获得积分10
3秒前
4秒前
Tuyen完成签到,获得积分10
4秒前
无梦为安发布了新的文献求助10
5秒前
maclogos发布了新的文献求助10
5秒前
5秒前
LQ应助风清扬采纳,获得50
5秒前
香蕉觅云应助风清扬采纳,获得10
5秒前
6秒前
在水一方应助YWXO采纳,获得10
6秒前
6秒前
快乐的鱼发布了新的文献求助10
7秒前
123456完成签到,获得积分10
7秒前
nancy发布了新的文献求助10
7秒前
8秒前
岚染发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
乐乐应助王晰贺采纳,获得10
10秒前
一只好果子完成签到,获得积分20
10秒前
晚风完成签到,获得积分10
11秒前
12秒前
123456发布了新的文献求助10
12秒前
12秒前
孙皓晨发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
Nzee完成签到,获得积分10
15秒前
Akim应助文静元霜采纳,获得10
16秒前
MSQWE发布了新的文献求助10
16秒前
17秒前
17秒前
清绘发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480496
求助须知:如何正确求助?哪些是违规求助? 4581690
关于积分的说明 14381729
捐赠科研通 4510321
什么是DOI,文献DOI怎么找? 2471702
邀请新用户注册赠送积分活动 1458148
关于科研通互助平台的介绍 1431837