材料科学
动力学
扩散
石墨
离子
接受者
电子
超短脉冲
纳米技术
光电子学
化学物理
复合材料
凝聚态物理
热力学
光学
有机化学
激光器
化学
物理
量子力学
作者
Fei Wang,Anbang Lu,Zhendong Liu,Weidong Zhang,Yulin Gao,Qi Zhao,Jianguo Sun,Chengzhi Zhang,Quanbing Liu,Hong Bo Liu,John Wang
标识
DOI:10.1002/adma.202509207
摘要
Abstract Sluggish solid‐state diffusion kinetics of lithium ions is among the primary bottlenecks limiting the fast‐charging performance of graphite anodes. Pre‐intercalating molecules in graphite interlayers can tune the valence π‐electrons, but there are few systematic studies in designing such structures by electron coupling to optimize the charge transfer kinetics. Herein, deliberately guided by simulations, the present study identifies and develops a class of electron‐acceptor aluminum chloride species for intercalation into graphite (AC‐G), aiming to accelerate lithium ions charge transfer to the intercalated graphite through the formation of electron‐acceptor bridges within the graphite interlayers. Consequently, the AC‐G achieves a two‐order‐of‐magnitude enhancement in lithium ions diffusion coefficient (5.85 × 10 −7 cm 2 s −1 ) compared to that in pristine graphite. It delivers stable cycling over 2000 cycles with a high areal capacity retention of 3.84 mAh cm −2 at 1C and maintains 500‐cycle stability at 5C. Furthermore, an Ah‐level pouch cell assembled with AC‐G and cathode achieves an energy density of 285 Wh kg −1 at 3C. The present work provides a new design strategy for graphite by introducing interlayer electron‐bridging structures, offering valuable insights for next‐generation fast‐charging lithium‐ion batteries
科研通智能强力驱动
Strongly Powered by AbleSci AI