已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI ‐generated dermatologic images show deficient skin tone diversity and poor diagnostic accuracy: An experimental study

医学 人口统计学的 皮肤病科 多样性(政治) 人口学 人类学 社会学
作者
Lucie Joerg,Margaret Kabakova,Jennifer Y. Wang,Evan Austin,Marc Cohen,Alana Kurtti,Jared Jagdeo
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:39 (12): 2134-2141 被引量:5
标识
DOI:10.1111/jdv.20849
摘要

Abstract Background Generative AI models are increasingly used in dermatology, yet biases in training datasets may reduce diagnostic accuracy and perpetuate ethnic health disparities. Objectives To evaluate two key AI outputs: (1) skin tone representation and (2) diagnostic accuracy of generated dermatologic conditions. Methods Using the standard prompt ‘Generate a photo of a person with [skin condition],’ this cross‐sectional study investigated skin tone diversity and accuracy of four leading AI models—Adobe Firefly, ChatGPT‐4o, Midjourney and Stable Diffusion—across the 20 most common skin conditions. All images ( n = 4000) were evaluated for skin tone representation from June to July 2024. Two independent raters used the Fitzpatrick scale to assess skin tone diversity compared to U.S. Census demographics using χ 2 . Two blinded dermatology residents evaluated a randomized 200‐image subset for diagnostic accuracy. An inter‐rater kappa statistic was calculated to assess rater agreement. Results Across all generated images, 89.8% depicted light skin, and 10.2% depicted dark skin. Adobe Firefly demonstrated the highest alignment with U.S. demographic data, with a non‐significant chi‐square result (38.1% dark skin, χ 2 (1) = 0.320, p = 0.572), indicating no meaningful difference between its generated skin tone diversity and census demographics. ChatGPT‐4o, Midjourney and Stable Diffusion significantly underrepresented dark skin with Fitzpatrick scores of >IV (6.0%, 3.9% and 8.7% dark skin, respectively; all p < 0.001). Across all platforms, only 15% of images were identifiable by raters as the intended condition. Adobe Firefly had the lowest accuracy (0.94%), while ChatGPT‐4o, Midjourney and Stable Diffusion demonstrated higher but still suboptimal accuracy (22%, 12.2% and 22.5%, respectively). Conclusions The study highlights substantial deficiencies in the diversity and accuracy of AI‐generated dermatological images. AI programs may exacerbate cognitive bias and health inequity, suggesting the need for ethical AI guidelines and diverse datasets to improve disease diagnosis and dermatologic care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mo完成签到 ,获得积分10
2秒前
剑舞红颜笑完成签到 ,获得积分10
3秒前
科目三应助魔幻的小夏采纳,获得30
3秒前
上官若男应助啊啊啊采纳,获得10
5秒前
云霞完成签到 ,获得积分10
5秒前
欢呼宛秋完成签到,获得积分10
8秒前
9秒前
mashibeo应助张林夕采纳,获得10
14秒前
14秒前
王珺完成签到,获得积分10
15秒前
Lucas应助西红柿有饭吃吗采纳,获得10
16秒前
18秒前
Akim应助和谐以冬采纳,获得10
18秒前
啊啊啊发布了新的文献求助10
19秒前
20秒前
sun发布了新的文献求助20
21秒前
KKKhuan发布了新的文献求助30
22秒前
吴彦祖应助欢呼宛秋采纳,获得10
23秒前
周小叽发布了新的文献求助10
25秒前
31秒前
勤奋的猫咪完成签到 ,获得积分10
36秒前
36秒前
37秒前
sun完成签到,获得积分10
38秒前
桃花源的瓶起子完成签到 ,获得积分10
38秒前
小人物的坚持完成签到 ,获得积分10
40秒前
41秒前
41秒前
负责的爆米花完成签到,获得积分10
42秒前
zhoushishan完成签到,获得积分10
42秒前
43秒前
周小叽完成签到,获得积分10
43秒前
44秒前
KanmenRider完成签到,获得积分10
45秒前
852应助loey采纳,获得10
46秒前
科研通AI6应助sunset采纳,获得10
46秒前
47秒前
所所应助Ethan采纳,获得10
47秒前
杨武天一发布了新的文献求助80
48秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443691
求助须知:如何正确求助?哪些是违规求助? 4553531
关于积分的说明 14242226
捐赠科研通 4475181
什么是DOI,文献DOI怎么找? 2452302
邀请新用户注册赠送积分活动 1443219
关于科研通互助平台的介绍 1418888