A Comprehensive Review of Unimodal and Multimodal Emotion Detection: Datasets, Approaches, and Limitations

计算机科学 情绪检测 人工智能 机器学习 数据科学 情绪识别
作者
Priyanka Thakur,Nirmal Kaur,Naveen Aggarwal,Sarbjeet Singh
出处
期刊:Expert Systems [Wiley]
卷期号:42 (9)
标识
DOI:10.1111/exsy.70103
摘要

ABSTRACT Emotion detection from face and speech is inherent for human–computer interaction, mental health assessment, social robotics, and emotional intelligence. Traditional machine learning methods typically depend on handcrafted features and are primarily centred on unimodal systems. However, the unique characteristics of facial expressions and the variability in speech features present challenges in capturing complex emotional states. Accordingly, deep learning models have been substantial in automatically extracting intrinsic emotional features with greater accuracy across multiple modalities. The proposed article presents a comprehensive review of recent progress in emotion detection, spanning from unimodal to multimodal systems, with a focus on facial and speech modalities. It examines state‐of‐the‐art machine learning, deep learning, and the latest transformer‐based approaches for emotion detection. The review aims to provide an in‐depth analysis of both unimodal and multimodal emotion detection techniques, highlighting their limitations, popular datasets, challenges, and the best‐performing models. Such analysis aids researchers in judicious selection of the most appropriate dataset and audio‐visual emotion detection models. Key findings suggest that integrating multimodal data significantly improves emotion recognition, particularly when utilising deep learning methods trained on synchronised audio and video datasets. By assessing recent advancements and current challenges, this article serves as a fundamental resource for researchers and practitioners in the field of emotional AI, thereby aiding in the creation of more intuitive and empathetic technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
RE完成签到 ,获得积分10
刚刚
美丽柠檬完成签到,获得积分10
1秒前
呆鸥完成签到,获得积分10
1秒前
xzn1123应助夕荀采纳,获得10
1秒前
Adore应助tiomooo采纳,获得10
1秒前
1秒前
1秒前
王蕊完成签到,获得积分10
1秒前
佳佳应助不会看文献采纳,获得10
2秒前
烟花应助Zx950103采纳,获得10
2秒前
2秒前
期刊完成签到 ,获得积分10
2秒前
renjiu完成签到,获得积分10
2秒前
念0完成签到 ,获得积分10
3秒前
sugar完成签到,获得积分20
3秒前
Emil发布了新的文献求助10
4秒前
ljy应助marxing采纳,获得10
4秒前
4秒前
sos完成签到,获得积分10
4秒前
4秒前
5秒前
Peanuts完成签到 ,获得积分10
5秒前
TTTJY完成签到,获得积分10
6秒前
科研通AI6应助dangniuma采纳,获得10
6秒前
6秒前
7秒前
7秒前
成就的念双完成签到,获得积分10
7秒前
8秒前
8秒前
Lucas应助Emil采纳,获得10
8秒前
Syd173@163.com完成签到,获得积分20
9秒前
知性的土豆完成签到,获得积分10
9秒前
zhang发布了新的文献求助10
9秒前
啦啦啦完成签到,获得积分10
9秒前
nihao2023发布了新的文献求助10
9秒前
Loooong应助lzl采纳,获得10
10秒前
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4250867
求助须知:如何正确求助?哪些是违规求助? 3784154
关于积分的说明 11877727
捐赠科研通 3435656
什么是DOI,文献DOI怎么找? 1885387
邀请新用户注册赠送积分活动 936973
科研通“疑难数据库(出版商)”最低求助积分说明 842891