Walnut Surface Defect Classification and Detection Model Based on Enhanced YOLO11n

计算机科学 跳跃式监视 帧(网络) 最小边界框 人工智能 灵敏度(控制系统) 帧速率 模式识别(心理学) 工程类 图像(数学) 电信 电子工程
作者
Xinyi Ma,Zepu Hao,Shuangyin Liu,Jingbin Li
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:15 (15): 1707-1707
标识
DOI:10.3390/agriculture15151707
摘要

Aiming at the challenges in practical production lines, including the difficulty in accurately capturing external defects on continuously rolling walnuts, distinguishing subtle defects, and differentiating narrow fissures from natural walnut textures, this paper proposes an improved walnut external defect detection model named YOLO11-GME, based on YOLO11n. Firstly, the original backbone network is replaced with the lightweight GhostNetV1 network, enhancing model precision while meeting real-time detection speed requirements. Secondly, a Mixed Local Channel Attention (MLCA) mechanism is incorporated into the neck to strengthen the network’s ability to capture features of subtle defects, thereby improving defect recognition accuracy. Finally, the EIoU loss function is adopted to enhance the model’s localization capability for irregularly shaped defects and reduce false detection rates by improving the scale sensitivity of bounding box regression. Experimental results demonstrate that the improved YOLO11-GME model achieves a mean Average Precision (mAP) of 96.2%, representing improvements of 8.6%, 7%, and 5.8% compared to YOLOv5n, YOLOv8n, and YOLOv10n, respectively, and a 5.9% improvement over the original YOLOv11. Precision rates for the normal, fissure, and inferior categories increased by 8.7%, 5.3%, and 3.7%, respectively. The frame rate remains at 43.92 FPS, approaching the original model’s 51.02 FPS. These results validate that the YOLO11-GME model enhances walnut external defect detection accuracy while maintaining real-time detection speed, providing robust technical support for defect detection and classification in industrial walnut production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马发布了新的文献求助10
刚刚
Hello应助DJDJ采纳,获得10
刚刚
逸龙完成签到,获得积分0
刚刚
11发布了新的文献求助10
刚刚
miaomiao完成签到,获得积分10
刚刚
1秒前
zhangxf608完成签到,获得积分10
1秒前
跨材料给害羞雨南的求助进行了留言
2秒前
wfrg完成签到,获得积分10
2秒前
科研通AI6应助流年采纳,获得10
2秒前
2秒前
2224536完成签到,获得积分10
2秒前
张狗蛋发布了新的文献求助10
2秒前
臻酒完成签到 ,获得积分10
3秒前
彭于晏应助hyue采纳,获得10
4秒前
4秒前
andy完成签到,获得积分10
4秒前
英俊的铭应助伶俐的绿蓉采纳,获得10
5秒前
最专业完成签到,获得积分10
5秒前
5秒前
6秒前
强小强完成签到,获得积分10
6秒前
6秒前
6秒前
陈进发布了新的文献求助10
7秒前
sure完成签到,获得积分10
7秒前
科目三应助六神曲采纳,获得10
7秒前
7秒前
俏皮代柔发布了新的文献求助30
7秒前
yinkaiyue完成签到,获得积分10
7秒前
11完成签到,获得积分20
9秒前
liuliu发布了新的文献求助10
9秒前
ztt发布了新的文献求助10
9秒前
Levi完成签到,获得积分20
9秒前
10秒前
诩阽发布了新的文献求助10
10秒前
zr发布了新的文献求助10
10秒前
11秒前
火星人发布了新的文献求助10
11秒前
蔡tonghui完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270404
求助须知:如何正确求助?哪些是违规求助? 4428490
关于积分的说明 13784907
捐赠科研通 4306348
什么是DOI,文献DOI怎么找? 2363078
邀请新用户注册赠送积分活动 1358762
关于科研通互助平台的介绍 1321631